Conductance fluctuations have been studied in a soft wall stadium and a Sinai billiard defined by electrostatic gates on a high mobility semiconductor heterojunction. These reproducible magnetoconductance fluctuations are found to be fractal confirming recent theoretical predictions of quantum signatures in classically mixed (regular and chaotic) systems. The fractal character of the fluctuations provides direct evidence for a hierarchical phase space structure at the boundary between regular and chaotic motion.
We analyze theoretically and experimentally the electronic structure and charging diagram of three coupled lateral quantum dots filled with electrons. Using the Hubbard model and real-space exact diagonalization techniques we show that the electronic properties of this artificial molecule can be understood using a set of topological Hunds rules. These rules relate the multielectron energy levels to spin and the interdot tunneling t, and control charging energies. We map out the charging diagram for up to N = 6 electrons and predict a spin-polarized phase for two holes. The theoretical charging diagram is compared with the measured charging diagram of the gated triple-dot device.
Strong confinement of charges in few-electron systems such as in atoms, molecules, and quantum dots leads to a spectrum of discrete energy levels often shared by several degenerate states. Because the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum results from a change in cantilever resonance frequency and dissipation when an electron tunnels on/off a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the quantitative measurement of predicted temperature-dependent shifts of Coulomb blockade peaks. Scanning the surface shows that several quantum dots may reside on what topographically appears to be just one. Relative coupling strengths can be estimated from these images of grouped coupled dots.nanoelectronics | single-electron charging | shell structure | electrostatic force microscopy T he ability to confine single charges at discrete energy levels makes semiconductor quantum dots (QDs) promising candidates as a platform for quantum computation (1, 2) and singlephoton sources (3). Tremendous progress has been made not only in understanding the properties of single electrons in QDs but also in controlling their quantum states, which is an essential prerequisite for quantum computation (4). Single-electron transport measurements have been the main experimental technique for investigating electron tunneling into QDs (5). Charge sensing techniques using built-in charge sensors, such as quantum point contacts (6), complement transport measurements because lower electron tunneling rates can be monitored with even real-time detection being possible (7). It is instrumentally challenging to study self-assembled QDs via conventional transport and charge sensing methods because of the difficulty in attaching electrodes. Although progress is being made (8-12), these techniques have very small yield and therefore make it difficult to assess variation in QD electronic properties. Compared to typical QDs studied via transport measurements, in particular lithographically defined QDs, self-assembled QDs can be fabricated to have smaller sizes, stronger confinement potentials, and a more scalable fabrication process, all of which make them attractive for practical applications.In this paper, we focus on an alternative technique for studying QDs that is better suited for self-assembled QDs: charge sensing by atomic force microscopy (AFM). Charge sensing by AFM is a convenient method to study the electronic structure of QDs because nanoelectrodes are not required and large numbers of QDs can be investigated in one experiment. Termed single-electron electrostatic force microscopy (e-EFM), this technique relies on the high force sensitivity of AFM to detect the electrostatic force resulting from single electrons tunneling into ...
We have studied switching (telegraph) noise at low temperature in GaAs/AlGaAs heterostructures with lateral gates and introduced a model for its origin, which explains why noise can be suppressed by cooling samples with a positive bias on the gates. The noise was measured by monitoring the conductance fluctuations around e 2 /h on the first step of a quantum point contact at around 1.2 K. Cooling with a positive bias on the gates dramatically reduces this noise, while an asymmetric bias exacerbates it. Our model is that the noise originates from a leakage current of electrons that tunnel through the Schottky barrier under the gate into the conduction band and become trapped near the active region of the device. The key to reducing noise is to keep the barrier opaque under experimental conditions. Cooling with a positive bias on the gates reduces the density of ionized donors. This builds in an effective negative gate voltage so that a smaller negative bias is needed to reach the desired operating point. This suppresses tunnelling from the gate and hence the noise. The reduction in the density of ionized donors also strengthens the barrier to tunneling at a given applied voltage. Further support for the model comes from our direct observation of the leakage current into a closed quantum dot, around 10 −20 A for this device. The current was detected by a neighboring quantum point contact, which showed monotonic steps in time associated with the tunneling of single electrons into the dot. If asymmetric gate voltages are applied, our model suggests that the noise will increase as a consequence of the more negative gate voltage applied to one of the gates to maintain the same device conductance. We observe exactly this behaviour in our experiments.
Spin qubits based on interacting spins in double quantum dots have been demonstrated successfully. Readout of the qubit state involves a conversion of spin to charge information, which is universally achieved by taking advantage of a spin blockade phenomenon resulting from Pauli's exclusion principle. The archetypal spin blockade transport signature in double quantum dots takes the form of a rectified current. At present, more complex spin qubit circuits including triple quantum dots are being developed. Here we show, both experimentally and theoretically, that in a linear triple quantum dot circuit the spin blockade becomes bipolar with current strongly suppressed in both bias directions and also that a new quantum coherent mechanism becomes relevant. In this mechanism, charge is transferred non-intuitively via coherent states from one end of the linear triple dot circuit to the other, without involving the centre site. Our results have implications for future complex nanospintronic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.