The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.
The effects of α‐ + β‐, γ‐, ω‐ and total gliadins on mixing, extension baking, and techno‐functional properties of doughs from hard and soft flours were measured using small‐scale techniques. The addition of all gliadin fractions resulted in decreased mixing time, peak resistance, maximum resistance to extension, and loaf height, and in increased resistance breakdown and extensibility. The various gliadin fractions showed differences in functional properties, with γ‐gliadin reducing the mixing time and maximum resistance to extension to the greatest extent, ω‐gliadin contributing to the greatest reduction in loaf height, and α‐ + β‐gliadins having the least effect on reducing loaf height. The effects of gliadin fractions on loaf height were correlated with molecular mass, and effects on mixing time, maximum resistance to extension, and extensibility were correlated with hydrophobicity.
By undertaking a census of all agricultural, outdoor recreational, and environmental groups (land‐based groups) in two adjacent counties in Vermont, we demonstrate the dramatic increase of local environmental groups in the last 15 years. Building on the methodologies of Kempton et al. (2001), we first show that official lists of nonprofit groups‐from the Vermont Secretary of State, the Internal Revenue Service, and local grassroots directories—significantly undercount local environmental groups. Second, we show that since the mid‐1980s, the number and membership roles of local autonomous environmental groups have grown rapidly relative to all other types of local and nonlocal land‐based groups in these counties. This article provides preliminary evidence of the recent “greening of social capital.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.