Lagged oceanic and atmospheric climate indices are potentially useful predictors of seasonal rainfall totals. A rigorous Bayesian joint probability modeling approach is applied to find the cross-validation predictive densities of gridded Australian seasonal rainfall totals using lagged climate indices as predictors over the period of 1950–2009. The evidence supporting the use of each climate index as a predictor of seasonal rainfall is quantified by the pseudo-Bayes factor based on cross-validation predictive densities. The evidence strongly supports the use of climate indices from the Pacific region with weaker, but positive, evidence for the use of climate indices from the Indian region and the extratropical region. The spatial structure and seasonal variation of the evidence for each climate index is mapped and compared. Spatially, the strongest supporting evidence is found for forecasting in northern and eastern Australia. Seasonally, the strongest evidence is found from August–October to November–January and the weakest evidence is found from March–May to May–July. In some regions and seasons, there is little evidence supporting the use of climate indices for forecasting seasonal rainfall. Climate indices derived from sea surface temperature anomalies in the Pacific region show stronger persistence in the relationship with Australian seasonal rainfall totals than climate indices derived from sea surface temperature anomalies in the Indian region. Climate indices derived from atmospheric variables are also strongly supported, provided they represent the large-scale circulation. Many climate indices are found to show similar supporting evidence for forecasting Australian seasonal rainfall, leading to the prospect of combining climate indices in multiple predictor models and/or model averaging.
Merging forecasts from multiple models has the potential to combine the strengths of individual models and to better represent forecast uncertainty than the use of a single model. This study develops a Bayesian model averaging (BMA) method for merging forecasts from multiple models, giving greater weights to better performing models. The study aims for a BMA method that is capable of producing relatively stable weights in the presence of significant sampling variability, leading to robust forecasts for future events. The BMA method is applied to merge forecasts from multiple statistical models for seasonal rainfall forecasts over Australia using climate indices as predictors. It is shown that the fully merged forecasts effectively combine the best skills of the models to maximize the spatial coverage of positive skill. Overall, the skill is low for the first half of the year but more positive for the second half of the year. Models in the Pacific group contribute the most skill, and models in the Indian and extratropical groups also produce useful and sometimes distinct skills. The fully merged probabilistic forecasts are found to be reliable in representing forecast uncertainty spread. The forecast skill holds well when forecast lead time is increased from 0 to 1 month. The BMA method outperforms the approach of using a model with two fixed predictors chosen a priori and the approach of selecting the best model based on predictive performance.
GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called “coherence.” This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.
We present a new streamflow forecasting system called forecast guided stochastic scenarios (FoGSS). FoGSS makes use of ensemble seasonal precipitation forecasts from a coupled ocean‐atmosphere general circulation model (CGCM). The CGCM forecasts are post‐processed with the method of calibration, bridging and merging (CBaM) to produce ensemble precipitation forecasts over river catchments. CBaM corrects biases and removes noise from the CGCM forecasts, and produces highly reliable ensemble precipitation forecasts. The post‐processed CGCM forecasts are used to force the Wapaba monthly rainfall‐runoff model. Uncertainty in the hydrological modeling is accounted for with a three‐stage error model. Stage 1 applies the log‐sinh transformation to normalize residuals and homogenize their variance; Stage 2 applies a conditional bias‐correction to correct biases and help remove negative forecast skill; Stage 3 applies an autoregressive model to improve forecast accuracy at short lead‐times and propagate uncertainty through the forecast. FoGSS generates ensemble forecasts in the form of time series for the coming 12 months. In a case study of two catchments, FoGSS produces reliable forecasts at all lead‐times. Forecast skill with respect to climatology is evident to lead‐times of about 3 months. At longer lead‐times, forecast skill approximates that of climatology forecasts; that is, forecasts become like stochastic scenarios. Because forecast skill is virtually never negative at long lead‐times, forecasts of accumulated volumes can be skillful. Forecasts of accumulated 12 month streamflow volumes are significantly skillful in several instances, and ensembles of accumulated volumes are reliable. We conclude that FoGSS forecasts could be highly useful to water managers.
[1] Forecasting rainfall at the seasonal time scale is highly challenging. Seasonal rainfall forecasts are typically made using statistical or dynamical models. The two types of models have different strengths, and their combination has the potential to increase forecast skill. In this study, statistical-dynamical forecasts of Australian seasonal rainfall are assessed. Statistical rainfall forecasts are made based on observed relationships with lagged climate indices. Dynamical forecasts are made by calibrating raw outputs from multiple general circulation models. The statistical and dynamical forecasts are then merged using a Bayesian model averaging (BMA) method. The skill and reliability of the forecasts is assessed through cross-validation for the period 1980-2010. We confirm that the dynamical and statistical groups of models give skill in different locations and seasons and the merged statistical-dynamical forecasts represent a significant improvement in terms of maximizing spatial and temporal coverage of skillfulness. We find that the merged statistical-dynamical forecasts are reliable in representing forecast uncertainty.Citation: Schepen, A., Q. J. Wang, and D. E. Robertson (2012), Combining the strengths of statistical and dynamical modeling approaches for forecasting Australian seasonal rainfall,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.