Background: The timed-up-and-go test (TUG) is one of the most commonly used tests of physical function in clinical practice and for research outcomes. Inertial sensors have been used to parse the TUG test into its composite phases (rising, walking, turning, etc.), but have not validated this approach against an optoelectronic gold-standard, and to our knowledge no studies have published the minimal detectable change of these measurements. Methods: Eleven adults performed the TUG three times each under normal and slow walking conditions, and 3 m and 5 m walking distances, in a 12-camera motion analysis laboratory. An inertial measurement unit (IMU) with tri-axial accelerometers and gyroscopes was worn on the upper-torso. Motion analysis marker data and IMU signals were analyzed separately to identify the six main TUG phases: sit-to-stand, 1st walk, 1st turn, 2nd walk, 2nd turn, and stand-to-sit, and the absolute agreement between two systems analyzed using intra-class correlation (ICC, model 2) analysis. The minimal detectable change (MDC) within subjects was also calculated for each TUG phase. Results: The overall difference between TUG sub-tasks determined using 3D motion capture data and the IMU sensor data was <0.5 s. For all TUG distances and speeds, the absolute agreement was high for total TUG time and walk times (ICC > 0.90), but less for chair activity (ICC range 0.5–0.9) and typically poor for the turn time (ICC < 0.4). MDC values for total TUG time ranged between 2–4 s or 12–22% of the TUG time measurement. MDC of the sub-task times were higher proportionally, being 20–60% of the sub-task duration. Conclusions: We conclude that a commercial IMU can be used for quantifying the TUG phases with accuracy sufficient for clinical applications; however, the MDC when using inertial sensors is not necessarily improved over less sophisticated measurement tools.
BackgroundThe pendulum test is commonly used to quantify knee extensor spasticity, but it is currently unknown to what extent common pendulum test metrics can detect spasticity in patients with neurological injury or disease, and if the presence of flexor spasticity influences the test outcomes.MethodsA retrospective analysis was conducted on 131 knees, from 93 patients, across four different patient cohorts. Clinical data included Modified Ashworth Scale (MAS) scores for knee extensors and flexors, and years since diagnosis. BioTone™ measures included extensor strength, passive and active range of motion, and pendulum tests of most affected or both knees. Pendulum test metrics included the relaxation index (RI), 1st flexion amplitude (F1amp) and plateau angle (Plat), where RI=F1amp/Plat. Two-way ANOVA tests were used to determine if pendulum test metrics were influenced by the degree of knee flexor spasticity graded by the MAS, and ANCOVA was used to test for confounding effects of age, years since injury, strength and range of motion (ROM). In order to identify the best pendulum test metrics, Receiver Operator Characteristic analysis and logistic regression (LR) analysis were used to classify knees by spasticity status (none or any) and severity (low/moderate or high/severe).ResultsPendulum test metrics for knee extensors were not influenced by degree of flexor spasticity, age, years since injury, strength or ROM of the limb. RI, F1amp and Plat were > 70% accurate in classifying knees by presence of clinical spasticity (from the MAS), but were less accurate (< 70%) for grading spasticity level. The best classification accuracy was obtained using F1amp and Plat independently in the model rather than using RI alone.ConclusionsWe conclude that the pendulum test has good predictive value for detecting the presence of extensor spasticity, independent of the existence of flexor spasticity. However, the ability to grade spasticity level as measured by MAS using the RI and/or F1amp may be limited. Further study is warranted to explore if the pendulum test is suitable for quantifying more severe spasticity.
BackgroundSpasticity is a prevalent chronic condition among persons with upper motor neuron syndrome that significantly impacts function and can be costly to treat. Clinical assessment is most often performed with passive stretch-reflex tests and graded on a scale, such as the Modified Ashworth Scale (MAS). However, these scales are limited in sensitivity and are highly subjective. This paper shows that a simple wearable sensor system (angle sensor and 2-channel EMG) worn during a stretch-reflex assessment can be used to more objectively quantify spasticity in a clinical setting.MethodsA wearable sensor system consisting of a fibre-optic goniometer and 2-channel electromyography (EMG) was used to capture data during administration of the passive stretch-reflex test for elbow flexor and extensor spasticity. A kinematic model of unrestricted passive joint motion was used to extract metrics from the kinematic and EMG data to represent the intensity of the involuntary reflex. Relationships between the biometric results and clinical measures (MAS, isometric muscle strength and passive range of motion) were explored.ResultsPreliminary results based on nine patients with varying degrees of flexor and extensor spasticity showed that kinematic and EMG derived metrics were strongly correlated with one another, were correlated positively (and significantly) with clinical MAS, and negatively correlated (though mostly non-significant) with isometric muscle strength.ConclusionsWe conclude that a wearable sensor system used in conjunction with a simple kinematic model can capture clinically relevant features of elbow spasticity during stretch-reflex testing in a clinical environment.
BackgroundAlthough physical activity and exercise is known to benefit people with multiple sclerosis (MS), the ability of these individuals to participate in such interventions is difficult due to the mobility impairments caused by the disease. Keeogo is a lower-extremity powered exoskeleton that may be a potential solution for enabling people with MS to benefit from physical activity and exercise.MethodsAn open-label, randomized, cross-over trial was used to examine the immediate performance effects when using the device, and the potential benefits of using the device in a home setting for 2 weeks. Clinical performance tests with and without the device included the 6 min walk test, timed up and go test and the 10-step stair test (up and down). An activity monitor was also used to measure physical activity at home, and a patient-reported questionnaire was used to determine the amount and extent of home use. Generalized linear models were used to test for trial effects, and correlation analysis used to examine relationships between trial effects and usage.ResultsTwenty-nine patients with MS participated. All measures showed small decrements in performance while wearing the device compared to not wearing the device. However, significant improvements in unassisted (Rehab effect) performance were found after using the device at home for 2 weeks, compared to 2 weeks at home without the device, and participants improved their ability to use the device over the trial period (Training effect). Rehab and Training effects were related to the self-reported extent that participants used Keeogo at home.ConclusionsKeeogo appears to deliver an exercise-mediated benefit to individuals with MS that improved their unassisted gait endurance and stair climbing ability. Keeogo might be a useful tool for delivering physical activity interventions to individuals with mobility impairment due to MS.Trial registrationClinicalTrials.gov: NCT02904382. Registered 19 September 2016 - Retrospectively registered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.