Alpha-lipoic acid (LA) has become a common ingredient in multivitamin formulas, anti-aging supplements, and even pet food. It is well-defined as a therapy for preventing diabetic polyneuropathies, and scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age. How do the biochemical properties of LA relate to its biological effects? Herein, we review the molecular mechanisms of LA discovered using cell and animal models, and the effects of LA on human subjects. Though LA has long been touted as an antioxidant, it has also been shown to improve glucose and ascorbate handling, increase eNOS activity, activate Phase II detoxification via the transcription factor Nrf2, and lower expression of MMP-9 and VCAM-1 through repression of NF-kappa-B. LA and its reduced form, dihydrolipoic acid, may use their chemical properties as a redox couple to alter protein conformations by forming mixed disulfides. Beneficial effects are achieved with low micromolar levels of LA, suggesting that some of its therapeutic potential extends beyond the strict definition of an antioxidant. Current trials are investigating whether these beneficial properties of LA make it an appropriate treatment not just for diabetes, but also for the prevention of vascular disease, hypertension, and inflammation.
alpha-Lipoic acid (LA), a naturally occurring dithiol compound, has long been known as an essential cofactor for mitochondrial bioenergetic enzymes. Aside from its enzymatic role, in vitro and in vivo studies suggest that LA also acts as a powerful micronutrient with diverse pharmacologic and antioxidant properties. Pharmacologically, LA improves glycemic control, polyneuropathies associated with diabetes mellitus, and effectively mitigates toxicities associated with heavy metal poisoning. As an antioxidant, LA directly terminates free radicals, chelates transition metal ions (e.g. iron and copper), increases cytosolic glutathione and vitamin C levels and prevents toxicities associated with their loss. These diverse actions suggest that LA acts by multiple mechanisms both physiologically and pharmacologically, many of which are only now being explored. Herein, we review the known biochemical properties of LA with particular reference to how LA may be an effective agent to ameliorate certain pathophysiologies of many chronic diseases.
Mitochondrial dysfunction and the accumulation of oxidative damage to macromolecules are believed to play key roles in the aging process. Characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). We investigated whether differences in hydrogen peroxide production (H2O2) and oxidative stress existed between cardiac SSM and IFM isolated from young (6 mo) and old (24 mo) male Fischer-344 rats. There was a significant increase in oxidative stress levels (4-hydroxy-2-nonenal-modified proteins, protein carbonyls, and malondialdehyde) in IFM with age. In contrast, only protein carbonyls were elevated in SSM with age. Significant age-related increases in MnSOD, GPX, and CAT activities were detected in IFM, while in SSM, MnSOD, and GPX activities increased with age and CAT activity declined. These increases in antioxidant enzyme activity likely occurred in response to increased mitochondrial production of superoxide and hydrogen peroxide. Indeed, SSM produced more H2O2 with age, while the increase in IFM was not significant, but this may be due to the higher antioxidant enzyme activity observed in IFM compared with SSM. Finally, reduced glutathione levels were significantly lower in IFM compared with SSM in both young and old rats, while glutathione reductase activity was not different with age or mitochondrial subpopulations, indicating increased consumption of glutathione. The accumulation of oxidant-induced damage in IFM may be a major contributing factor to the age-related alterations in myocardial function. Our results emphasize the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging.
The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.