This paper presents recent advances in the development and validation of the two-phase flow topology models implemented in CFD-BWR, an advanced Computational Fluid Dynamics (CFD) computer code that allows the detailed analysis of the two-phase flow and heat transfer phenomena in Boiling Water Reactor (BWR) fuel assemblies under various operating conditions. The local inter-phase surface topology plays a central role in determining the mass, momentum, and energy exchanges between the liquid and vapor phases and between the two-phase coolant and the fuel pin cladding. The paper describes the topology map used to determine the local inter-phase surface topology and the role of the local topology in determining the inter-phase mass, momentum, and energy transfer. It discusses the relationship between the local interphase surface topology and the traditional channel flow regimes and presents results of experiment analyses in which computed local topologies are aggregated into flow regimes and compared with experimental observations.
An adaptive discretisation for population balance equations is presented. The method is combined with the multiphase CFD code STAR-CCM+ of CD-adapco. In order to account for the multydisperse nature of the flow the dispersed phase is split into M size groups; from the modelling point of view each group is a separate phase in every aspect but the name. The groups move with their own velocities and exchange mass, momentum and energy with other groups and with the continuous phase. Size of a group is not prescribed a priori, but calculated from an additional scalar equation. A special proce-
1This article is protected by copyright. All rights reserved dure is designed to ensure that in each point all groups have the same volume fractions. As the particles sizes change due to coagulation and breakup the discretisation of the phase space adjusts itself to the new size distribution. Few groups suffice to predict the mean characteristics of the flow.
This paper describes the updating of the sub-cooled boiling model used in CFD codes with the more recent and better sub-models. The improved sub-models include: Hibiki and Ishii [1] correlation for nucleation site density, Kocamustafaogullari [2] correlation for bubble departure diameter and the S-gamma model of Lo and Rao [3] for bubble size distribution in the flow. The new model has been tested against measured data from Debora [4] and Bartolomei [5]. The results show that improvement in the bubble size prediction has the most significant impact on the accuracy of the model.
This paper presents the current status in the development and validation of an advanced Computational Fluid Dynamics (CFD) model, CFD-BWR, which allows the detailed analysis of the two-phase flow and heat transfer phenomena in Boiling Water Reactor (BWR) fuel assemblies under various operating conditions. The CFD-BWR model uses an Eulerian Two-Phase (E2P) approach, and is also referred to as the E2P modeling framework. It is being developed as a customized module built on the foundation of the commercial CFD-code STAR-CD which provides general two-phase flow modeling capabilities. The integral validation efforts have focused on the analysis of the NUPEC Full-Size Boiling Water Reactor Test (BFBT) within the framework of the OECD/NRC benchmark exercise. The paper reviews the two-phase models implemented in the CFD-BWR code, and emphasizes recently implemented models of inter-phase and coolant-cladding momentum and energy exchanges. Results of recent BFBT experiment simulations using these models are presented and the effects of the new models on the calculated void distribution are discussed. The paper concludes with a discussion of future model development and validation plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.