Li-ion batteries (LIB) are used in many applications because of their high-power/energy density, long life cycling, and low self-discharge rate. The use of LIB continues to grow every day, and the necessity for proper safety standards grows as well. A key aspect for safe utilization of LIB is determining their safety and remaining useful life (RUL). Battery
Li-ion batteries are the preferred choice of energy storage in many applications. However, the potential for fire and explosion due to mechanical damage remains a safety concern. Currently, there are no criteria for the extent of the mechanical damage under which the batteries are safe to use. Here, we investigate the effects of bending damage to Li-ion cells on their impedance spectra. After the initial characterization of four Li-ion pouch cells, one of the cells underwent a three-point bending load. We measured the impedance spectra of this cell after each increment of loading. The impedance data of the control group cells were collected at the same intervals as the damaged cell. A distributed equivalent circuit model (dECM) was developed using the data from the electrochemical impedance spectroscopy (EIS) procedure. We observed that several model parameters such as the magnitude of constant phase elements had similar trends in the control cells and the bent cell. However, some model parameters such as resistances in parallel with constant phase elements, and the inductor showed dependency on the extent of the damage. These results suggest the potential for use of such parameters as an indicator of mechanical damage when visual inspection of cells is not possible in a battery pack setup. Future steps include investigation of similar trends for other commercial batteries and chemistries and form factors to verify the applicability of the current findings in a broader context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.