Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells that expand in tumor bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wildtype mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo. Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies.
mAbs are used to treat solid and hematologic malignancies and work in part through Fc receptors (FcRs) on natural killer cells (NK). However, FcR-mediated functions of NK cells from patients with cancer are significantly impaired. Identifying the mechanisms of this dysfunction and impaired response to mAb therapy could lead to combination therapies and enhance mAb therapy. Cocultures of autologous NK cells and MDSC from patients with cancer were used to study the effect of myeloid-derived suppressor cells (MDSCs) on NK-cell FcR-mediated functions including antibody-dependent cellular cytotoxicity, cytokine production, and signal transduction Mouse breast cancer models were utilized to study the effect of MDSCs on antibody therapy and test the efficacy of combination therapies including a mAb and an MDSC-targeting agent. MDSCs from patients with cancer were found to significantly inhibit NK-cell FcR-mediated functions including antibody-dependent cellular cytotoxicity, cytokine production, and signal transduction in a contact-independent manner. In addition, adoptive transfer of MDSCs abolished the efficacy of mAb therapy in a mouse model of pancreatic cancer. Inhibition of iNOS restored NK-cell functions and signal transduction. Finally, nonspecific elimination of MDSCs or inhibition of iNOS significantly improved the efficacy of mAb therapy in a mouse model of breast cancer. MDSCs antagonize NK-cell FcR-mediated function and signal transduction leading to impaired response to mAb therapy in part through nitric oxide production. Thus, elimination of MDSCs or inhibition of nitric oxide production offers a strategy to improve mAb therapy. .
CTLA-4 is an immune checkpoint expressed on active anticancer T cells. When it combines with its ligand B7 on dendritic cells, it inhibits the activity of the T cells. The Bromo- and Extra-Terminal (BET) protein family includes proteins that regulate the expression of key oncogenes and antiapoptotic proteins. BET inhibitor (BETi) has been shown to reduce the expression of MYC by suppressing its transcription factors and to down-regulate the hypoxic transcriptome response to VEGF-A. This paper develops a mathematical model of the treatment of cancer by combination therapy of BETi and CTLA-4 inhibitor. The model shows that the two drugs are positively correlated in the sense that the tumor volume decreases as the dose of each of the drugs is increased. The model also considers the effect of the combined therapy on levels of myeloid-derived suppressor cells (MDSCs) and the overexpression of TNF-α, which may predict gastrointestinal side effects of the combination.
Introduction Reolysin®, a proprietary isolate of reovirus Type 3 Dearing, enters and preferentially induces apoptosis of malignant cells. RAS pathway activation has been associated with more efficient reoviral infectivity and enhanced oncolysis. Reovirus is currently in advanced solid tumor phase 1 – 2 trials; no clinical trials have been conducted in patients with hematologic malignancies. Methodologies A phase 1 trial treated 12 relapsed myeloma patients at two dose levels. Reolysin was infused daily for 5 days every 28 days. Bone marrow specimens were examined by In situ based hybridization (ISH) for CD138, p38, caspase-3, reoviral RNA and capsid protein at screening and cycle 1 day 8. Junctional adhesion molecule 1 (JAM-1) and cancer up regulated gene 2 (CUG2) were evaluated in patient samples and MM cell lines. Neutralizing Anti-Reovirus Antibody (NARA) assay was performed weekly during cycle 1. Results There were no dose limiting toxicities (DLTs), patients reached the 3 x 1010 TCID50 daily on days 1-5 dose level, and grade 3 laboratory toxicities included neutropenia, thrombocytopenia, and hypophosphatemia. In situ hybridization demonstrated reoviral genome confined in MM cells. Reoviral capsid protein and caspase-3 were rarely identified within reoviral RNA positive cells. The longest durations of stable disease were 4, 5 and 8 months. Conclusions Treatment with single-agent Reolysin was well tolerated and associated with avid reoviral RNA myeloma cell entry but only minimal intracellular reoviral protein production within MM cells. Our data support that in MM cells, Reolysin-induced oncolysis requires combination therapy, similar to other cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.