We connect two different approaches for calculating functional determinants on quotients of hyperbolic spacetime: the heat kernel method and the quasinormal mode method. For the example of a rotating BTZ background, we show how the image sum in the heat kernel method builds up the logarithms in the quasinormal mode method, while the thermal sum in the quasinormal mode method builds up the integrand of the heat kernel. More formally, we demonstrate how the heat kernel and quasinormal mode methods are linked via the Selberg zeta function. We show that a 1-loop partition function computed using the heat kernel method may be cast as a Selberg zeta function whose zeros encode quasinormal modes. We discuss how our work may be used to predict quasinormal modes on more complicated spacetimes. arXiv:1811.08433v2 [hep-th]
We define the stretched future light cone, a timelike hypersurface composed of the worldlines of radially accelerating observers with constant and uniform proper acceleration. By attributing temperature and entropy to this hypersurface, we derive Einstein's equations from the Clausius theorem. Moreover, we show that the gravitational equations of motion for a broad class of diffeomorphism-invariant theories of gravity can be obtained from thermodynamics on the stretched future light cone, provided the BekensteinHawking entropy is replaced by the Wald entropy.
Quantum extremal surfaces (QES), codimension-2 spacelike regions which extremize the generalized entropy of a gravity-matter system, play a key role in the study of the black hole information problem. The thermodynamics of QESs, however, has been largely unexplored, as a proper interpretation requires a detailed understanding of backreaction due to quantum fields. We investigate this problem in semi-classical Jackiw-Teitelboim (JT) gravity, where the spacetime is the eternal two-dimensional Anti-de Sitter (AdS2) black hole, Hawking radiation is described by a conformal field theory with central charge c, and backreaction effects may be analyzed exactly. We show the Wald entropy of the semi-classical JT theory entirely encapsulates the generalized entropy — including time-dependent von Neumann entropy contributions — whose extremization leads to a QES lying just outside of the black hole horizon. Consequently, the QES defines a Rindler wedge nested inside the enveloping black hole. We use covariant phase space techniques on a time-reflection symmetric slice to derive a Smarr relation and first law of nested Rindler wedge thermodynamics, regularized using local counterterms, and intrinsically including semi-classical effects. Moreover, in the microcanonical ensemble the semi-classical first law implies the generalized entropy of the QES is stationary at fixed energy. Thus, the thermodynamics of the nested Rindler wedge is equivalent to the thermodynamics of the QES in the microcanonical ensemble.
We study the semi-classical thermodynamics of two-dimensional de Sitter space (dS2) in Jackiw-Teitelboim (JT) gravity coupled to conformal matter. We extend the quasi-local formalism of Brown and York to dS2, where a timelike boundary is introduced in the static patch to uniquely define conserved charges, including quasi-local energy. The boundary divides the static patch into two systems, a cosmological system and a black hole system, the former being unstable under thermal fluctuations while the latter is stable. A semi-classical quasi-local first law is derived, where the Gibbons–Hawking entropy is replaced by the generalized entropy. In the microcanonical ensemble the generalized entropy is stationary. Further, we show the on-shell Euclidean microcanonical action of a causal diamond in semi-classical JT gravity equals minus the generalized entropy of the diamond, hence extremization of the entropy follows from minimizing the action. Thus, we provide a first principles derivation of the island rule for U(1) symmetric dS2 backgrounds, without invoking the replica trick. We discuss the implications of our findings for static patch de Sitter holography.
A 'novel' pure theory of Einstein-Gauss-Bonnet gravity in four-spacetime dimensions can be constructed by rescaling the Gauss-Bonnet coupling constant, seemingly eluding Lovelock's theorem. Recently, however, the well-posedness of this model has been called into question. Here we apply a 'dimensional regularization' technique, first used by Mann and Ross to write down a D → 2 limit of general relativity, to the case of pure Einstein-Gauss-Bonnet gravity. The resulting four-dimensional action is a particular Horndeski theory of gravity matching the result found via a Kaluza-Klein reduction over a flat internal space. Some cosmological solutions of this four-dimensional theory are examined. We further adapt the technique to higher curvature Lovelock theories of gravity, as well as a low-energy effective string action with an α correction. With respect to the D → 4 limit of the α -corrected string action, we find we must also rescale the dilaton to have a non-singular action in four dimensions. Interestingly, when the conformal rescaling Φ is interpreted as another dilaton, the regularized string action appears to be a special case of a covariant multi-Galileon theory of gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.