Morphologic analysis of 281 species of ammonoids from Great Britain, the North American mid-continent, and the South Urals, at eight successive levels within the Namurian Series (ca. 18 Myr duration), using bivariate plots and principal-components analysis, permits definition of morphologic diversity and identification of morphotypic patterns in time and space. Namurian ammonoids exhibit the same general range of shell geometry that characterizes ammonoids as a whole; there were few post-Namurian innovations in the basic geometry of planispiral ammonoids. Within this overall range of geometry, there are eight preferred morphotypes: two were phylogenetically monopolized by long-ranging forms; three were generalized and reoccur in successive horizons; two others were homeomorphically utilized at different times by different lineages; and one represents morphologic innovation followed by radiation. Such patterns seem to represent combined effects of function, phylogeny, and ecology. Synchronous variations in isolated successions suggest global controls such as eustatic sea-level fluctuations, whereas provincial differences in diversity may be attributable to paleogeographic and ecologic factors. We predict that the Namurian record of ammonoid morphologic diversity and change will be found to be distinctive and differentiable from earlier and later intervals.
This paper presents combined Spitzer IRAC and Hubble COS results for a double-blind survey of 195 single and 22 wide binary white dwarfs for infrared excesses and atmospheric metals. The selection criteria include cooling ages in the range 9 to 300 Myr, and hydrogenrich atmospheres so that the presence of atmospheric metals can be confidently linked to ongoing accretion from a circumstellar disc. The entire sample has infrared photometry, whereas 168 targets have corresponding ultraviolet spectra. Three stars with infrared excesses due to debris discs are recovered, yielding a nominal frequency of 1.5 +1.5 −0.5 per cent, while in stark contrast, the fraction of stars with atmospheric metals is 45 ± 4 per cent. Thus, only one out of 30 polluted white dwarfs exhibits an infrared excess at 3-4 µm in IRAC photometry, which reinforces the fact that atmospheric metal pollution is the most sensitive tracer of white dwarf planetary systems. The corresponding fraction of infrared excesses around white dwarfs with wide binary companions is consistent with zero, using both the infrared survey data and an independent assessment of potential binarity for well-established dusty and polluted stars. In contrast, the frequency of atmospheric pollution among the targets in wide binaries is indistinct from apparently single stars, and moreover the multiplicity of polluted white dwarfs in a complete and volume-limited sample is the same as for field stars. Therefore, it appears that the delivery of planetesimal material onto white dwarfs is ultimately not driven by stellar companions, but by the dynamics of planetary bodies.
Analysis of an exhaustive data base of Namurian ammonoid shell characters indicates that the morphology of the Goniatitida can be explained in terms of functional constraints, resulting particularly from hydrostatic and hydrodynamic properties. Modes of life ranging from benthic to pelagic are inferred on this basis for various goniatitid morphotypes; all morphologic features and facies associations are normally compatible with these inferences. Neutral buoyancy is shown to have been likely for all goniatitids. By contrast, the prolecanitids (Order Agoniatitida) exhibit a number of hydrostatic and morphologic anomalies; these anomalies are not explicable using the same principles and remain problematic. This is noteworthy, in that prolecanitids survived the Permian/Triassic extinctions and gave rise to the diverse ceratitic radiation in the Triassic.The applicability of these results to ammonoids outside the Namurian is assessed, and, in particular, morphologic parallels with Mesozoic ammonites are discussed.
Nine metal-polluted white dwarfs are observed with medium-resolution optical spectroscopy, where photospheric abundances are determined and interpreted through comparison against solar system objects. An improved method of making such comparisons is presented that overcomes potential weaknesses of prior analyses, with the numerous sources of error considered to highlight the limitations on interpretation. The stars are inferred to be accreting rocky, volatile-poor asteroidal materials with origins in differentiated bodies, in line with the consensus model. The most heavily polluted star in the sample has 14 metals detected, and appears to be accreting material from a rocky planetesimal, whose composition is mantle-like with a small Fe-Ni core component. Some unusual abundances are present: one star is strongly depleted in Ca, while two others show Na abundances elevated above bulk Earth, speculated either to reflect diversity in the formation conditions of the source material, or to be traces of past accretion events. Another star shows clear signs that accretion ceased around 5 Myr ago, causing Mg to dominate the photospheric abundances, as it has the longest diffusion time of the observed elements. Observing such post-accretion systems allows constraints to be placed on models of the accretion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.