We describe the production and screening of a genetically encoded library of 106 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmidencoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, a critical protein–protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay for the identification of lanthipeptides with new biological activities.
We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.
RationaleTandem mass spectrometry of phosphorylated ions can often yield a limited number of product ions owing to the labile nature of phosphate groups. Developing techniques to improve dissociation for this type of ion has implications for the structural characterisation of many different phosphorylated ions, such as those from nucleotides, pharmaceutical compounds, peptides and polymers.MethodsSolutions of adenosine monophosphate, diphosphate and triphosphate (AMP, ADP and ATP) were studied in a hybrid linear ion trap–Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Precursor ions with an overall single positive charge, including protonated nucleotides or nucleotide cations containing one, two or three sodium atoms, were isolated for tandem mass spectrometry. Collision‐induced dissociation (CID) was performed in the linear ion trap, with electron‐induced dissociation (EID) being conducted in the FTICR cell.ResultsEID resulted in many product ions not seen in CID. EID product ion spectra were seen to vary for AMP, ADP and ATP when the nucleotide cation contained zero, one, two or three sodiums. Precursor cations that contain two or three sodiums mainly formed product ions derived from the phosphate group. Conversely, when a precursor ion containing no sodium underwent EID, product ions mainly relating to the non‐phosphate end of the ion were observed. The number of phosphate groups was not seen to greatly affect either CID or EID product ion spectra.ConclusionsThe presence of sodium in a precursor ion directs electron‐induced bond dissociation, thus enabling targeted, and therefore tuneable, fragmentation of groups within that precursor ion. For all precursor ions, the most useful product ion spectra were obtained by EID for a precursor ion containing one sodium, with bond dissociation occurring across the entire nucleotide cation. The findings of this study can be used to improve the structural elucidation of many phosphorylated molecules by broadening the range of product ions achievable. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. AbstractSalicylsalicylic acid ('Salsalate') is a non-steroidal anti-inflammatory drug (NSAID) with anti-rheumatic properties, whose amorphous form offers the potential for enhanced dissolution rates and improved bioavailability compared with its crystalline counterpart. It has been reported to form a stable glassy phase on heating and rapid quenching. A number of the existing studies of the solid-state structure of salsalate and of its thermal decomposition contain information that is difficult to reconcile. In this manuscript we review much of the existing literature in light of our own recent studies using solution-state NMR, Mass Spectrometry and solid-state IR, and conclude that much of the literature data relating to melting and the glassy state is questionable due to failure to take into account the effects of thermal decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.