Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue (WAT), the primary site of triglyceride storage, and brown adipose tissue (BAT), which is specialized in energy expenditure and can counteract obesity1. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood2,3. Here, we demonstrate that while some members of the family of bone morphogenetic proteins (BMP) support white adipocyte differentiation, BMP-7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP-7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM164 and PGC-1 (PPARγ coactivator-1) α5, increased expression of brown fat defining marker uncoupling protein-1 (UCP-1) and adipogenic transcription factors peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding proteins (C/EBPs), and mitochondrial biogenesis via a p38 MAP kinase and PGC-1 dependent pathway. Moreover, BMP-7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. BMP-7 knockout embryos show a marked paucity of brown fat and near complete absence of UCP-1 protein. Adenoviral-mediated expression of BMP-7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and reduced weight gain. These data reveal an important role of BMP-7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential novel therapeutic approach for the treatment of obesity.
BMP-7/OP-1, a member of the transforming growth factor-beta (TGF-beta) family of secreted growth factors, is expressed during mouse embryogenesis in a pattern suggesting potential roles in a variety of inductive tissue interactions. The present study demonstrates that mice lacking BMP-7 display severe defects confined to the developing kidney and eye. Surprisingly, the early inductive tissue interactions responsible for establishing both organs appear largely unaffected. However, the absence of BMP-7 disrupts the subsequent cellular interactions required for their continued growth and development. Consequently, homozygous mutant animals exhibit renal dysplasia and anophthalmia at birth. Overall, these findings identify BMP-7 as an essential signaling molecule during mammalian kidney and eye development.
Pleiotropy, the ability of a single mutant gene to cause multiple mutant phenotypes, is a relatively common but poorly understood phenomenon in biology. Perhaps the greatest challenge in the analysis of pleiotropic genes is determining whether phenotypes associated with a mutation result from the loss of a single function or of multiple functions encoded by the same gene. Here we estimate the degree of pleiotropy in yeast by measuring the phenotypes of 4710 mutants under 21 environmental conditions, finding that it is significantly higher than predicted by chance. We use a biclustering algorithm to group pleiotropic genes by common phenotype profiles. Comparisons of these clusters to biological process classifications, synthetic lethal interactions, and protein complex data support the hypothesis that this method can be used to genetically define cellular functions. Applying these functional classifications to pleiotropic genes, we are able to dissect phenotypes into groups associated with specific gene functions.
The 'progress zone' model provides a framework for understanding progressive development of the vertebrate limb. This model holds that undifferentiated cells in a zone of fixed size at the distal tip of the limb bud (the progress zone) undergo a progressive change in positional information such that their specification is altered from more proximal to more distal fates. This positional change is thought to be driven by an internal clock that is kept active as long as the cells remain in the progress zone. However, owing to cell division, the most proximal of these cells are continually pushed outside the confines of the zone. As they exit, clock function ceases and cells become fixed with the positional value last attained while within the zone. In contrast to this model, our data suggest that the various limb segments are 'specified' early in limb development as distinct domains, with subsequent development involving expansion of these progenitor populations before differentiation. We also find, however, that the distal limb mesenchyme becomes progressively 'determined', that is, irreversibly fixed, to a progressively limited range of potential proximodistal fates.
Targeted inactivation of the Bmp7 gene in mouse leads to eye defects with late onset and variable penetrance (A. T. Dudley et al., 1995, Genes Dev. 9, 2795-2807; G. Luo et al., 1995, Genes Dev. 9, 2808-2820). Here we report that the expressivity of the Bmp7 mutant phenotype markedly increases in a C3H/He genetic background and that the phenotype implicates Bmp7 in the early stages of lens development. Immunolocalization experiments show that BMP7 protein is present in the head ectoderm at the time of lens placode induction. Using an in vitro culture system, we demonstrate that addition of BMP7 antagonists during the period of lens placode induction inhibits lens formation, indicating a role for BMP7 in lens placode development. Next, to integrate Bmp7 into a developmental pathway controlling formation of the lens placode, we examined the expression of several early lens placode-specific markers in Bmp7 mutant embryos. In these embryos, Pax6 head ectoderm expression is lost just prior to the time when the lens placode should appear, while in Pax6-deficient (Sey/Sey) embryos, Bmp7 expression is maintained. These results could suggest a simple linear pathway in placode induction in which Bmp7 functions upstream of Pax6 and regulates lens placode induction. At odds with this interpretation, however, is the finding that expression of secreted Frizzled Related Protein-2 (sFRP-2), a component of the Wnt signaling pathway which is expressed in prospective lens placode, is absent in Sey/Sey embryos but initially present in Bmp7 mutants. This suggests a different model in which Bmp7 function is required to maintain Pax6 expression after induction, during a preplacodal stage of lens development. We conclude that Bmp7 is a critical component of the genetic mechanism(s) controlling lens placode formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.