Manufacturing-oriented topology optimization has been extensively studied the past two decades, in particular for the conventional manufacturing methods, e.g., machining and injection molding or casting. Both design and manufacturing engineers have benefited from these efforts because of the close-tooptimal and friendly-to-manufacture design solutions. Recently, additive manufacturing (AM) has received significant attention from both academia and industry. AM is characterized by producing geometrically complex components layer-by-layer, and greatly reduces the geometric complexity restrictions imposed on topology optimization by conventional manufacturing. In other words, AM can make near-full use of the freeform structural evolution of topology optimization. Even so, new rules and restrictions emerge due to the diverse and intricate AM processes, which should be carefully addressed when developing the AM-specific topology optimization algorithms. Therefore, the motivation of this perspective paper is to summarize the state-of-art topology optimization methods for a variety of AM topics. At the same time, this paper also expresses the authors' perspectives on the challenges and opportunities in these topics. The hope is to inspire both researchers and engineers to meet these challenges with innovative solutions.
Compliant mechanisms are able to transfer motion, force, and energy using a monolithic structure without discrete hinge elements. The geometric design freedoms and multimate rial capability offered by the PolyJet 3D printing process enables the fabrication o f com pliant mechanisms with optimized topology. The inclusion of multiple materials in the topology optimization process has the potential to eliminate the narrow, weak, hingelike sections that are often present in single-material compliant mechanisms and also allow for greater magnitude deflections. In this paper, the authors propose a design and fabri cation process for the realization of 3-phase, multiple-material compliant mechanisms. The process is tested on a 2D compliant force inverter. Experimental and numerical per formance o f the resulting 3-phase inverter is compared against a standard 2-phase design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.