Metabolic syndrome is a group of obesity-related metabolic abnormalities that increase an individual’s risk of developing type 2 diabetes and cardiovascular disease. Here, we show that mice genetically deficient in Toll-like receptor 5 (TLR5), a component of the innate immune system that is expressed in the gut mucosa and that helps defend against infection, exhibit hyperphagia and develop hallmark features of metabolic syndrome, including hyperlipidemia, hypertension, insulin resistance, and increased adiposity. These metabolic changes correlated with changes in the composition of the gut microbiota, and transfer of the gut microbiota from TLR5-deficient mice to wild-type germ-free mice conferred many features of metabolic syndrome to the recipients. Food restriction prevented obesity, but not insulin resistance, in the TLR5-deficient mice. These results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.
SummaryThe intestinal tract is inhabited by a large diverse community of microbes collectively referred to as gut microbiota. While gut microbiota provide important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease (IBD) and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multilayered mucus structures that cover the intestinal surface thus allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine 1. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro 2, might be promoting the post-mid 20th century increase in IBD 3. Herein, we observed that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in WT hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition, and increased pro-inflammatory potential. Use of germ-free mice and fecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that broad use of emulsifying agents might be contributing to increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases.
Flagellin, the structural component of bacterial flagella, is secreted by pathogenic and commensal bacteria. Flagellin activates proinflammatory gene expression in intestinal epithelia. However, only flagellin that contacts basolateral epithelial surfaces is proinflammatory; apical flagellin has no effect. Pathogenic Salmonella, but not commensal Escherichia coli, translocate flagellin across epithelia, thus activating epithelial proinflammatory gene expression. Investigating how epithelia detect flagellin revealed that cell surface expression of Toll-like receptor 5 (TLR5) conferred NF-κB gene expression in response to flagellin. The response depended on both extracellular leucine-rich repeats and intracellular Toll/IL-1R homology region of TLR5 as well as the adaptor protein MyD88. Furthermore, immunolocalization and cell surface-selective biotinylation revealed that TLR5 is expressed exclusively on the basolateral surface of intestinal epithelia, thus providing a molecular basis for the polarity of this innate immune response. Thus, detection of flagellin by basolateral TLR5 mediates epithelial-driven inflammatory responses to Salmonella.
Objective The inner mucus layer in mouse colon normally separates bacteria from the epithelium. Do humans have a similar inner mucus layer and are defects in this mucus layer a common denominator for spontaneous colitis in mice models and ulcerative colitis? Methods and Results The colon mucus layer of mice deficient in the Muc2 mucin, Core 1 O-glycans, Tlr5, IL10 and Slc9a3 (Nhe3) together with dextran sulfate (DSS) treated mice was immunostained for Muc2 and the bacterial localization in the mucus was analyzed. All murine colitis models revealed bacteria in contact with the epithelium. Additional analysis of the less inflamed IL10−/− mice revealed a thicker mucus layer than WT, but the properties were different as the inner mucus layer could be penetrated both by bacteria in vivo and by fluorescent beads the size of bacteria ex vivo. Clear separation between bacteria or fluorescent beads and the epithelium mediated by the inner mucus layer was also evident in normal human sigmoid colon biopsies. In contrast, mucus on colon biopsies of ulcerative colitis (UC) patients with acute inflammation had a highly penetrable mucus. Most UC patients in remission had similar to controls an impenetrable mucus layer. Conclusions Normal human sigmoid colon has an inner mucus layer impenetrable to bacteria. The colon mucus in animal models that spontaneously develop colitis and in UC patients with active disease allows bacteria to penetrate and reach the epithelium. Thus colon mucus properties can be modulated and suggest a novel model of UC pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.