The formation of cyclobutane pyrimidine dimers between adjacent thymines by UV radiation is thought to be the first event in a cascade leading to skin cancer. Recent studies showed that thymine dimers are fully formed within 1 ps of UV irradiation, suggesting that the conformation at the moment of excitation is the determining factor in whether a given base pair dimerizes. MD simulations on the 50 ns time scale are used to study the populations of reactive conformers that exist at any given time in T18 single-strand DNA. Trajectory analysis shows that only a small percentage of the conformations fulfill distance and dihedral requirements for thymine dimerization, in line with the experimentally observed quantum yield of 3%. Plots of the pairwise interactions in the structures predict hot spots of DNA damage where dimerization in the ssT18 is predicted to be most favored. The importance of hairpin formation by intra-strand base pairing for distinguishing reactive and unreactive base pairs is discussed in detail. The data presented thus explain the structural origin of the results from the ultrafast studies of thymine dimer formation.
One of the major goals of modern supramolecular chemistry, with important practical relevance in many technical fields, is the development of synthetic host/guest partners with ultrahigh affinity and selectivity in water. Currently, most association pairs exhibit micromolar affinity or weaker, and there are very few host/guest systems with K > 10 M, apparently due to a barrier imposed by enthalpy/entropy compensation. This present study investigated the threading of a water-soluble tetralactam cyclophane by a deep-red fluorescent squaraine guest with flanking polyethylene glycol chains, an association process that is dominated by a highly favorable enthalpic driving force. A squaraine structure was rationally designed to permit guest back-folding as a strategy to greatly expand the hydrophobic surface area that could be buried upon complexation. Guided by computational modeling, an increasing number of N-benzyl groups were appended to the squaraine core, so that, after threading, the aromatic rings could fold back and stack against the cyclophane periphery. The final design iteration exhibited an impressive combination of fluorescence and supramolecular properties, including ratiometric change in deep-red emission, picomolar affinity ( K = 5.1 × 10 M), and very rapid threading ( k = 7.9 × 10 M s) in water at 25 °C. Similar excellent behavior was observed in serum solution. A tangible outcome of this study is a new cyclophane/squaraine association pair that will be a versatile platform for many different types of fluorescence-based imaging and diagnostics applications. From a broader perspective, guest back-folding of aromatic groups is a promising new supramolecular stabilization strategy to overcome enthalpy/entropy compensation and produce ultrahigh affinity [2]pseudorotaxane complexes in water and biological media.
Glycol nucleic acid (GNA), with a nucleotide backbone comprising of just three carbons and the stereocenter derived from propylene glycol (1,2-propanediol), is a structural analog of nucleic acids with intriguing biophysical properties, such as formation of highly stable antiparallel duplexes with high Watson-Crick base pairing fidelity. Previous crystallographic studies of double stranded GNA (dsGNA) indicated two forms of backbone conformations, an elongated M-type (containing metallo-base pairs) and the condensed N-type (containing brominated base pairs). A herein presented new crystal structure of a GNA duplex at 1.8 Å resolution from self-complementary 3'-CTC(Br)UAGAG-2' GNA oligonucleotides reveals an N-type conformation with alternating gauche-anti torsions along its (O3'-C3'-C2'-O2') backbone. To elucidate the conformational state of dsGNA in solution, molecular dynamic simulations over a period of 20 ns were performed with the now available repertoire of structural information. Interestingly, dsGNA adopts conformational states in solution intermediate between experimentally observed backbone conformations: simulated dsGNA shows the all-gauche conformation characteristic of M-type GNA with the higher helical twist common to N-type GNA structures. The so far counterintuitive, smaller loss of entropy upon duplex formation as compared to DNA can be traced back to the conformational flexibility inherent to dsGNA but missing in dsDNA. Besides extensive interstrand base stacking and conformational preorganization of single strands, this flexibility contributes to the extraordinary thermal stability of GNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.