Neurotransmitters are chemicals that are secreted by neurons and relay messages to target cells. The goal of in vivo electrochemistry is to provide a real-time view of neurotransmitters in the extracellular space of the brain. This may be done in brain slices or the intact brain of anesthetized animals to probe the basic functions that regulate neurotransmitter levels. In other experiments, the measurements need to be made in the brain of behaving animals so that correlations of neurotransmitter fluctuations and specific behaviors can be made. For the neurotransmitter dopamine this can be accomplished today by chemical sensing of this neurotransmitter with fast scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes. Dopamine is an important target because it is a central player in the brain 'reward' system, although its precise function is not understood. Proposed roles for dopamine in reward have included the mediation of hedonia (pleasure) 1 , a messenger of incentive salience (wanting) 2 , or an error signal that promotes the learning associated with goal-directed behavior 3,4 . These multiple interpretations of dopaminergic function have arisen because, until recently, a realtime view of dopamine and its actions in an awake, behaving animal was unavailable. At the same time, new electrochemical technologies are being developed to measure other neurotransmitter actions. Electrochemical approaches are well suited for this application because they allow a neurotransmitter to be measured with high time resolution, enabling its precise role in the execution of behavioral tasks to be investigated.In this review we will describe current methods to detect neurotransmitters and monitor their concentration dynamics within neural tissue. The requirements for these methods are quite stringent. They need to be sufficiently selective so that the measured responses are unequivocally due to a specific molecule. They need to be sufficiently sensitive that they can detect these substances in the physiological range. The best established methodologies are for dopamine, so the majority of the applications of the methods described herein will involve this neurotransmitter. As will be seen, the goals in measuring neurotransmitter functions are diverse. On one hand, investigators are unraveling the mechanisms that control neurotransmitter concentrations. These studies range from examining biochemical synthesis to metabolism. On the other hand, investigators are questioning how the neurotransmitter interacts with its receptors and what message it conveys. Yet a third major interest is the role of a neurotransmitter in specific behaviors. To obtain a complete view of neurotransmission and information processing, chemical sensors need to be combined with traditional neurochemical tools. We will illustrate this approach with some specific examples.
The voltammetric responses of carbon-fiber microelectrodes with a 1.0 V and a 1.4 V anodic limit were compared in this study. Fast-scan cyclic voltammetry was used to characterize the response to dopamine and several other neurochemicals. An increase in the adsorption properties of the carbon fiber leads to an increase in sensitivity of 9 fold in vivo. However the temporal response of the sensor is slower with the more positive anodic limit. Increased electron transfer kinetics also causes a decrease in the relative sensitivity for dopamine vs. other neurochemicals, and a change in their cyclic voltammograms. Stimulated release in the caudate-putamen was pharmacologically characterized in vivo using Ro-04-1284 and pargyline, and was consistent with that expected for dopamine.
Cocaine primarily exerts its behavioral effects by enhancing dopaminergic neurotransmission, amplifying dopamine-encoded sensorimotor integration. The presumed mechanism for this effect is inhibition of the dopamine transporter, which blocks dopamine uptake and prolongs the duration of dopamine in the extracellular space. However, there is growing evidence that cocaine can also augment dopamine release. Here, we directly monitored the actions of cocaine on dopamine release by using electrochemical detection to measure extracellular dopamine in the striatum of anesthetized mice. Cocaine enhanced the levels of striatal dopamine produced by electrical stimulation of dopaminergic neurons. Even after pretreatment with ␣-methyl-p-tyrosine, which depletes the readily releasable pool of dopamine, cocaine was still capable of elevating dopamine levels. This suggests that cocaine enhances dopamine release by mobilizing a reserve pool of dopamine-containing synaptic vesicles. To test this hypothesis, we examined electrically evoked dopamine release in synapsin I/II/III triple knock-out mice, which have impaired synaptic vesicle reserve pools. Knock-out of synapsins greatly reduced the ability of cocaine to enhance dopamine release with long stimulus trains or after depletion of the newly synthesized pool. We therefore conclude that cocaine enhances dopamine release and does so by mobilizing a synapsin-dependent reserve pool of dopamine-containing synaptic vesicles. This capacity to enhance exocytotic release of dopamine may be important for the psychostimulant actions of cocaine.
Intracranial self-stimulation (ICSS) activates the neural pathways that mediate reward, including dopaminergic terminal areas such as the nucleus accumbens (NAc). However, a direct role of dopamine in ICSS-mediated reward has been questioned. Here, simultaneous voltammetric and electrophysiological recordings from the same electrode reveal that, at certain sites, the onset of anticipatory dopamine surges and changes in neuronal firing patterns during ICSS are coincident, whereas sites lacking dopamine changes also lack patterned firing. Intrashell microinfusion of a D1, but not a D2 receptor antagonist, blocks ICSS. An iontophoresis approach was implemented to explore the effect of dopamine antagonists on firing patterns without altering behavior. Similar to the microinfusion experiments, ICSS-related firing is selectively attenuated following D1 receptor blockade. This work establishes a temporal link between anticipatory rises of dopamine and firing patterns in the NAc shell during ICSS and suggests that they may play a similar role with natural rewards and during drug self-administration.
Elliptical and cylindrical geometries of carbon-fiber microelectrodes were modified by covalent attachment of 4-sulfobenzenediazonium tetrafluoroborate following its electroreduction. Elliptical electrodes fabricated from Thornel P-55 carbon fibers show the highest amount of 4-sulfobenzene attached to the electrode. Fast-scan cyclic voltammetry was used to compare the response to dopamine and other neurochemicals at these modified carbon-fiber microelectrodes. The grafted layer causes an increased sensitivity to dopamine and other positively charged analytes that is due to increased adsorption of analyte in the grafted layer. However, this layer remains permeable to negatively charged compounds. Modified electrodes retain the increased sensitivity for dopamine during measurements in mouse brain tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.