Loperamide misuse and abuse is increasing in the United States, and pharmacists are encouraged to monitor and restrict their sales.
Background Anterior cruciate ligament (ACL) injuries are common, and children as young as 10 years of age exhibit movement patterns associated with an ACL injury risk. Prevention programs have been shown to reduce injury rates, but the mechanisms behind these programs are largely unknown. Few studies have investigated biomechanical changes after injury prevention programs in children. Purpose/Hypothesis To investigate the effects of the F-MARC 11+ injury prevention warm-up program on changes to biomechanical risk factors for an ACL injury in preadolescent female soccer players. We hypothesized that the primary ACL injury risk factor of peak knee valgus moment would improve after training. In addition, we explored other kinematic and kinetic variables associated with ACL injuries. Study Design Controlled laboratory study. Methods A total of 51 female athletes aged 10 to 12 years were recruited from soccer clubs and were placed into an intervention group (n = 28; mean [±SD] age, 11.8 ± 0.8 years) and a control group (n = 23; mean age, 11.2 ± 0.6 years). The intervention group participated in 15 in-season sessions of the F-MARC 11+ program (2 times/wk). Pre- and postseason motion capture data were collected during preplanned cutting, unanticipated cutting, double-leg jump, and single-leg jump tasks. Lower extremity joint angles and moments were estimated using OpenSim, a biomechanical modeling system. Results Athletes in the intervention group reduced their peak knee valgus moment compared with the control group during the double-leg jump (mean [±standard error of the mean] pre- to posttest change, −0.57 ± 0.27 %BW×HT vs 0.25 ± 0.25 %BW×HT, respectively; P = .034). No significant differences in the change in peak knee valgus moment were found between the groups for any other activity; however, the intervention group displayed a significant pre- to posttest increase in peak knee valgus moment during unanticipated cutting (P = .044). Additional analyses revealed an improvement in peak ankle eversion moment after training during preplanned cutting (P = .015), unanticipated cutting (P = .004), and the double-leg jump (P = .016) compared with the control group. Other secondary risk factors did not significantly improve after training, although the peak knee valgus angle improved in the control group compared with the intervention group during unanticipated cutting (P = .018). Conclusion The F-MARC 11+ program may be effective in improving some risk factors for an ACL injury during a double-leg jump in preadolescent athletes, most notably by reducing peak knee valgus moment. Clinical Relevance This study provides motivation for enhancing injury prevention programs to produce improvement in other ACL risk factors, particularly during cutting and single-leg tasks.
BackgroundIdentification of biomechanical risk factors associated with anterior cruciate ligament (ACL) injury can facilitate injury prevention. The purpose of this study is to investigate the effects of three foot landing positions, “toe-in”, “toe-out” and “neutral”, on biomechanical risk factors for ACL injury in males and females. The authors hypothesize that 1) relative to neutral, the toe-in position increases the biomechanical risk factors for ACL injury, 2) the toe-out position decreases these biomechanical risk factors, and 3) compared to males, females demonstrate greater changes in lower extremity biomechanics with changes in foot landing position.MethodsMotion capture data on ten male and ten female volunteers aged 20–30 years (26.4 ± 2.50) were collected during double-leg jump landing activities. Subjects were asked to land on force plates and target one of three pre-templated foot landing positions: 0° (“neutral”), 30° internal rotation (“toe-in”), and 30° external rotation (“toe-out”) along the axis of the anatomical sagittal plane. A mixed-effects ANOVA and pairwise Tukey post-hoc comparison were used to detect differences in kinematic and kinetic variables associated with biomechanical risk factors of ACL injury between the three foot landing positions.ResultsRelative to neutral, landing in the toe-in position increased peak hip adduction, knee internal rotation angles and moments (p < 0.01), and peak knee abduction angle (p < 0.001). Landing in the toe-in position also decreased peak hip flexion angle (p < 0.001) and knee flexion angle (p = 0.023). Landing in the toe-out position decreased peak hip adduction, knee abduction, and knee internal rotation angles (all p < 0.001). Male sex was associated with a smaller increase in hip adduction moment (p = 0.043) and knee internal rotation moment (p = 0.032) with toe-in landing position compared with female sex.ConclusionsToe-in landing position exacerbates biomechanical risk factors associated with ACL injury, while toe-out landing position decreases these factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.