We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.Comment: 13 pages, 7 figures. This revision is to correct an error in the coefficients of identity in Table
Quantum chemistry is an important area of application for quantum computation. In particular, quantum algorithms applied to the electronic structure problem promise exact, efficient methods for determination of the electronic energy of atoms and molecules. The Bravyi-Kitaev transformation is a method of mapping the occupation state of a fermionic system onto qubits. This transformation maps the Hamiltonian of n interacting fermions to an Oðlog nÞ-local Hamiltonian of n qubits. This is an improvement in locality over the JordanWigner transformation, which results in an O(n)-local qubit Hamiltonian. We present the Bravyi-Kitaev transformation in detail, introducing the sets of qubits which must be acted on to change occupancy and parity of states in the occupation number basis. We give recursive definitions of these sets and of the transformation and inverse transformation matrices, which relate the occupation number basis and the BravyiKitaev basis. We then compare the use of the Jordan-Wigner and Bravyi-Kitaev Hamiltonians for the quantum simulation of methane using the STO-6G basis.
Variational quantum algorithms are promising applications of noisy intermediate-scale quantum (NISQ) computers. These algorithms consist of a number of separate prepare-and-measure experiments that estimate terms in a Hamiltonian. The number of terms can become overwhelmingly large for problems at the scale of NISQ hardware that may soon be available. We use unitary partitioning (developed independently by Izmaylov et al. [J. Chem. Theory Comput. 16, 190 (2020)]) to define variational quantum eigensolver procedures in which additional unitary operations are appended to the ansatz preparation to reduce the number of terms. This approach may be scaled to use all coherent resources available after ansatz preparation. We also study the use of asymmetric qubitization to implement the additional coherent operations with lower circuit depth. Using this technique, we find a constant factor speedup for lattice and random Pauli Hamiltonians. For electronic structure Hamiltonians, we prove that linear term reduction with respect to the number of orbitals, which has been previously observed in numerical studies, is always achievable. For systems represented on 10-30 qubits, we find that there is a reduction in the number of terms by approximately an order of magnitude. Applied to the plane-wave dual-basis representation of fermionic Hamiltonians, however, unitary partitioning offers only a constant factor reduction. Finally, we show that noncontextual Hamiltonians may be reduced to effective commuting Hamiltonians using unitary partitioning.
The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan–Wigner transformation and the Bravyi–Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper, we discuss resource implications for the use of the Bravyi–Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems, which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi–Kitaev transformation is typically at least approximately as efficient as the canonical Jordan–Wigner transformation and results in substantially reduced gate count estimates when performing limited circuit optimizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.