Combustion-based sources of shaft power tend to significantly penalize distributed propulsion concepts, but electric motors represent an opportunity to advance the use of integrated distributed propulsion on an aircraft. This enables use of propellers in nontraditional, non-thrust-centric applications, including wing lift augmentation, through propeller slipstream acceleration from distributed leading edge propellers, as well as wingtip cruise propulsors. Developing propellers for these applications challenges long-held constraints within propeller design, such as the notion of optimizing for maximum propulsive efficiency, or the use of constant-speed propellers for high-performance aircraft. This paper explores the design space of fixed-pitch propellers for use as (1) lift augmentation when distributed about a wing's leading edge, and (2) as fixed-pitch cruise propellers with significant thrust at reduced tip speeds for takeoff. A methodology is developed for evaluating the high-level trades for these types of propellers and is applied to the exploration of a NASA Distributed Electric Propulsion concept. The results show that the leading edge propellers have very high solidity and pitch well outside of the empirical database, and that the cruise propellers can be operated over a wide RPM range to ensure that thrust can still be produced at takeoff without the need for a pitch change mechanism. To minimize noise exposure to observers on the ground, both the leading edge and cruise propellers are designed for low tip-speed operation during takeoff, climb, and approach. Nomenclature Coefficient for 2 nd order term, inner chord Radial blade location Coefficient for 2 nd order term, outer chord Radial location of blade hub Coefficient for 2 nd order term, twist Blade tip radius Activity factor Thrust Coefficient for linear term, inner chord ⃑ Vector of design parameters Coefficient for linear term, outer chord Velocity Coefficient for linear order term, twist ̅ Average total induced velocity from propeller Propeller chord Propeller tip speed Constant term, inner chord Relative importance of th objective Constant term, outer chord Normalized radial blade location, ⁄ Constant term, twist Normalized propeller hub location Design lift coefficient Normalized location of maximum chord Integrated lift coefficient Normalized chord value, ⁄ Power coefficient Ratio of normalized chord at to Thrust coefficient Normalized maximum chord
Turbo-electric propulsive fuselage aircraft featuring Boundary-Layer Ingestion (BLI) are considered promising candidates to achieve the emissions reduction targets set for aviation. This paper presents an analytical method capable of estimating the BLI benefit at aircraft level, enabling a quick exploration of the propulsive fuselage design space. The design space exploration showed that the assumptions regarding the underwing turbofans and BLI fan mass estimation can have an important impact on the final fuel burn estimation. The same applies to the total efficiency assumed for the electric transmission, the range of the aircraft mission, and the propulsive efficiency of the engines used as benchmark. The regional jet and short- to medium-range aircraft classes seem to be the most promising as the ingested drag and power saving are among the largest, with long-range aircraft being just behind. The future introduction of advanced technologies, which target the reduction of vortex and wave dissipation at aircraft level, could increase the potential benefit of propulsive fuselage BLI. On the other hand, the potential benefit would be decreased if more efficient and lighter ultra high bypass ratio engines were used as benchmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.