Naturally time-averaged accumulations of skeletal remains—death assemblages—provide reliable, albeit temporally coarse, information on the species composition and structure of communities in diverse settings, and their mismatch with local living communities usually signals recent human-driven ecological change. Here, we present the first test of live–dead mismatch as an indicator of human stress using ostracodes. On three islands along a gradient of human population density in the Bahamas, we compared the similarity of living and death assemblages in 10 lakes with relatively low levels of human stress to live–dead similarity in 11 physically comparable lakes subject to industrial, agricultural, or other human activities currently or in the past. We find that live–dead agreement in pristine lakes is consistently excellent, boding well for using death assemblages in modern-day and paleolimnological biodiversity assessments. In most comparison of physically similar paired lakes, sample-level live–dead mismatch in both taxonomic composition and species’ rank abundance is on average significantly greater in the stressed lakes; live–dead agreement is not lower in all samples from stressed lakes, but is more variable. When samples are pooled for lake-level and island-level comparisons, stressed lakes still yield lower live–dead agreement, but the significance of the difference with pristine lakes decreases—species that occur dead-only (or alive-only) in one sample are likely to occur alive (or dead) in other samples. Interisland differences in live–dead agreement are congruent with, but not significantly correlated with, differences in human population density. This situation arises from heterogeneity in the timing and magnitudes of stresses and in the extent of poststress recovery. Live–dead mismatch in ostracode assemblages thus may be a reliable indicator of human impact at the sample level with the potential to be a widely applicable tool for identifying impacted habitats and, perhaps, monitoring the progress of their recovery.
Lakes on carbonate platform islands such as the Bahamas display wide variability in morphometry, chemistry, and fauna. These parameters are ultimately driven by climate, sea level, and carbonate accumulation and dissolution. The authors propose a model that integrates climatological, geomorphological, and stratigraphic frameworks to understand processes of carbonate-hosted lake formation and limnological characteristics in modern day environments, with applications to carbonate lake sedimentary records. Fifty-two lakes from San Salvador Island and Eleuthera, Bahamas, were examined for water chemistry, basin morphology, conduit development, conductivity, and major ions. Using non-metric, multidimensional scaling ordination methods, the authors derived a model dividing lakes into either constructional or destructional formational modes. Constructional lakes were further divided into pre-highstand and highstand types based on whether their formation occurred during a marine regressive or transgressive phase. Destructional lakes are created continually by dissolution of bedrock at fresh/saline water interfaces and their formation is therefore related to changing climate and sea level. This model shows that lake formation is influenced by the hydrologic balance associated with climatic conditions that drives karst dissolution as well as the deposition of aeolian dune ridges that isolate basins due to sea-level fluctuations. It allows for testing and examining the climatic and hydrologic regime as related to carbonate accumulation and dissolution through time, and for an improved understanding of lake sensitivity and response to climate as preserved in the lacustrine sedimentary record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.