Mathematical finance makes use of stochastic processes to model sources of uncertainty in market prices. Such models have helped in the assessment of many financial situations. These approaches impose the stochastic process a priori which is then fitted to data. Hence, unchecked hypotheses can creep into the formalism and observable phenomena plays little role in building the model fundamentals. We attempt to reverse the procedure in order to include presumably more realistic price movements. Operational assumptions are used to construct a trajectory set relating discrete chart properties with investors' portfolio re-balancing preferences. By identifying features of these trajectories we can construct models that capture different sources of risk and use a geometric procedure to produce replication bounds for a contingent claim. Why a future unfolding chart fails to belong to the proposed trajectory set is testable. A preliminary risk-reward analysis based on this is also developed.
Mathematical finance makes use of stochastic processes to model sources of uncertainty in market prices. Such models have helped in the assessment of many financial situations. These approaches impose the stochastic process a priori which is then fitted to data. Hence, unchecked hypotheses can creep into the formalism and observable phenomena plays little role in building the model fundamentals. We attempt to reverse the procedure in order to include presumably more realistic price movements. Operational assumptions are used to construct a trajectory set relating discrete chart properties with investors' portfolio re-balancing preferences. By identifying features of these trajectories we can construct models that capture different sources of risk and use a geometric procedure to produce replication bounds for a contingent claim. Why a future unfolding chart fails to belong to the proposed trajectory set is testable. A preliminary risk-reward analysis based on this is also developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.