Aeromonas salmonicida expresses a large number of proven and suspected virulence factors including bacterial surface proteins, extracellular degradative enzymes, and toxins. We report the isolation and characterization of a 4-gene cluster, tapABCD, from virulent A. salmonicida A450 that encodes proteins homologous to components required for type IV pilus biogenesis. One gene, tapA, encodes a protein with high homology to type IV pilus subunit proteins from many Gramnegative bacterial pathogens, including Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio vulnificus. A survey of A. salmonicida isolates from a variety of sources shows that the tapA gene is as ubiquitous in this species as it is in other members of the Aeromonads. Immunoblotting experiments demonstrate that it is expressed in vitro and is antigenically conserved among the A. salmonicida strains tested. A mutant A. salmonicida strain defective in expression of TapA was constructed by allelic exchange and found to be slightly less pathogenic for juvenile Oncorhynchus mykiss (rainbow trout) than wild type when delivered by intraperitoneal injection. In addition, fish initially challenged with a high dose of wild type were slightly more resistant to rechallenge with wild type than those initially challenged with the tapA mutant strain, suggesting that presence of TapA contributes to immunity. Two of the other three genes identified, tapB and tapC, encode proteins with homology to factors known to be required for type IV pilus assembly in P. aeruginosa, but in an as yet unidentified manner. TapB is a member of the ABC-transporter family of proteins that contain characteristic nucleotide-binding regions, and which may provide energy for type IV pilus assembly through the hydrolysis of ATP. TapC homologs are integral cytoplasmic membrane proteins that may play a role in pilus anchoring or initiation of assembly. The fourth gene, tapD, encodes a product that shares homology with a family of proteins with a known biochemical function, namely, the type IV prepilin leader peptidases. These bifunctional enzymes proteolytically cleave the leader peptide from the pilin precursor (prepilin) and then N-methylate the newly exposed N-terminal amino acid prior to assembly of the subunits into the pilus structure. We demonstrate that A. salmonicida TapD is able to restore type IV pilus assembly and type II secretion in a P. aeruginosa strain carrying a mutation in its type IV peptidase gene, suggesting that it plays the same role in A. salmonicida.KEY WORDS: Virulence · Type IV pilin · Type II protein secretion Resale or republication not permitted without written consent of the publisherDis Aquat Org 51: [13][14][15][16][17][18][19][20][21][22][23][24][25] 2002 A. salmonicida. These include proteases (Sakai 1985), hemolysins and cytolysins (Hirono & Aoki 1993, Ellis 1997, a phospholipase (Buckley et al. 1982), a paracrystalline surface array protein (S-layer) (Trust 1993), and an extracellular polysaccharide capsule (Merino et al. 1996).In recent s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.