Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R 0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R 0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild.
The basic reproduction number of a pathogen, R0, determines whether a pathogen will spread (R0 > 1), when introduced into a fully susceptible population or fade out (R0 < 1), because infected hosts do not, on average, replace themselves. In this paper we develop a simple mechanistic model for the basic reproduction number for a group of tick-borne pathogens that wholly, or almost wholly, depend on horizontal transmission to and from vertebrate hosts. This group includes the causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of human babesiosis, Babesia microti, for which transmission between co-feeding ticks and vertical transmission from adult female ticks are both negligible. The model has only 19 parameters, all of which have a clear biological interpretation and can be estimated from laboratory or field data. The model takes into account the transmission efficiency from the vertebrate host as a function of the days since infection, in part because of the potential for this dynamic to interact with tick phenology, which is also included in the model. This sets the model apart from previous, similar models for R0 for tick-borne pathogens. We then define parameter ranges for the 19 parameters using estimates from the literature, as well as laboratory and field data, and perform a global sensitivity analysis of the model. This enables us to rank the importance of the parameters in terms of their contribution to the observed variation in R0. We conclude that the transmission efficiency from the vertebrate host to Ixodes scapularis ticks, the survival rate of Ixodes scapularis from fed larva to feeding nymph, and the fraction of nymphs finding a competent host, are the most influential factors for R0. This contrasts with other vector borne pathogens where it is usually the abundance of the vector or host, or the vector-to-host ratio, that determine conditions for emergence. These results are a step towards a better understanding of the geographical expansion of currently emerging horizontally-transmitted tick-borne pathogens such as Babesia microti, as well as providing a firmer scientific basis for targeted use of acaricide or the application of wildlife vaccines that are currently in development.
© 2 0 0 2 L a n d e s B i o s c i e n c e . N o t f o r d i s t r i b u t i o n . ABSTRACTThe control of cell cycle progression has been studied in asynchronous cultures using image analysis and time lapse techniques. This approach allows determination of the cycle phase and signaling properties of individual cells, and avoids the need for synchronization. In past studies this approach demonstrated that continuous cell cycle progression requires the induction of cyclin D1 levels by Ras, and that this induction takes place during G2 phase. These studies were designed to understand how Ras could induce cyclin D1 levels only during G2 phase. First, in studies with a Ras-specific promoter and cellular migration we find that endogenous Ras is active in all cell cycle phases of actively cycling NIH3T3 cells. This suggests that cyclin D1 induction during G2 phase is not the result of Ras activation specifically during this cell cycle period. To confirm this suggestion oncogenic Ras, which is expected to be active in all cell cycle phases, was microinjected into asynchronous cells. The injected protein induced cyclin D1 levels rapidly, but only in G2 phase cells. We conclude that in the continuously cycling cell the targets of Ras activity are controlled by cell cycle phase, and that this phenomenon is vital to cell cycle progression.
Cyclin D1 is required at high levels for passage through G 1 phase but must be reduced to low levels during S phase to avoid the inhibition of DNA synthesis. This suppression requires the phosphorylation of Thr286, which is induced directly by DNA synthesis. Because the checkpoint kinase ATR is activated by normal replication as well as by DNA damage, its potential role in regulating cyclin D1 phosphorylation was tested. We found that ATR, activated by either UV irradiation or the topoisomerase II binding protein 1 activator, promoted cyclin D1 phosphorylation. Small interfering RNA against ATR inhibited UV-induced Thr286 phosphorylation, together with that seen in normally cycling cells, indicating that ATR regulates cyclin D1 phosphorylation in normal as well as stressed cells. Following double-stranded DNA (dsDNA) breakage, the related checkpoint kinase ATM was also able to promote the phosphorylation of cyclin D1 Thr286. The relationship between these checkpoint kinases and cyclin D1 was extended when we found that normal cell cycle blockage in G 1 phase observed following dsDNA damage was efficiently overcome when exogenous cyclin D1 was expressed within the cells. These results indicate that checkpoint kinases play a critical role in regulating cell cycle progression in normal and stressed cells by directing the phosphorylation of cyclin D1.Cell cycle progression is regulated by the timely production and destruction of cyclins. Among these, cyclin D1 plays the unique role of responding to the extracellular mitogenic environment and then regulating the cell cycle machinery accordingly (29). After its expression is stimulated by mitogenic signaling, such as by activation of the Ras pathway, cyclin D1 binds to and activates cyclin-dependent kinase 4 or 6 (CDK4/6) to generate a kinase for the retinoblastoma protein. Upon phosphorylation, the retinoblastoma protein loses its ability to inhibit E2F transcription factors, resulting in the expression of E2F target genes, which are required for entry into S phase, DNA synthesis, and progression through the later cell cycle phases (30).Based upon recent studies from this and other labs, it is clear that the expression of cyclin D1 is highly regulated throughout the cell cycle and that its expression level in each cell cycle phase helps determine the overall proliferative characteristics of the cell. Cyclin D1 expression must be high for passage through G 1 phase and the initiation of DNA synthesis but must decline rapidly during S phase for efficient DNA synthesis (11,14). Cyclin D1 inhibits DNA synthesis due to its binding of PCNA, an essential component of the replication machinery (23, 39). At the completion of DNA synthesis, cyclin D1 levels must once again increase during G 2 phase if the cell is to continue active cell cycle progression. This G 2 phase increase is absolutely dependent upon the stabilization of cyclin D1 mRNA by proliferative signaling (10). In this way, continuing cell cycle progression requires positive growth conditions able to stimulate pr...
BackgroundDespite advancements in our understanding of the importance of stress reduction in achieving good health, we still only have limited insight into the impact of stress on cellular function. Recent studies have suggested that exposure to prolonged psychological stress may alter an individual’s physiological responses, and contribute to morbidity and mortality. This paper presents an overview of the study protocol we are using to examine the impact of life stressors on lifestyle factors, health-related quality of life and novel and established biomarkers of stress in midlife and older Australian women.The primary aim of this study is to explore the links between chronic psychological stress on both subjective and objective health markers in midlife and older Australian women. The study examines the extent to which exposure frightening, upsetting or stressful events such as natural disasters, illness or death of a relative, miscarriage and relationship conflict is correlated with a variety of objective and subjective health markers.Methods/DesignThis study is embedded within the longitudinal Healthy Aging of Women’s study which has collected data from midlife and older Australian women at 5 yearly intervals since 2001, and uses the Allostastic model of women’s health by Groër and colleagues in 2010. The current study expands the focus of the HOW study and will assess the impact of life stressors on quality of life and clinical biomarkers in midlife and older Australian women to explain the impact of chronic psychological stress in women.DiscussionThe proposed study hypothesizes that women are at increased risk of exposure to multiple or repeated stressors, some being unique to women, and the frequency and chronicity of stressors increases women’s risk of adverse health outcomes. This study aims to further our understanding of the relationships between stressful life experiences, perceived quality of life, stress biomarkers, chronic illness, and health status in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.