It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant 1 , source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place 2 in the redshift range z=10.8 ±1.4, while observations of quasars and Lyman-α galaxies have shown that the process was essentially completed 3,4,5 by z≈6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen (H I) fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare It has long been recognised that GRBs have the potential to be powerful probes of the early universe. Known to be the end product of rare massive stars 11 , GRBs and their afterglows can briefly outshine any other source in the universe, and would be theoretically detectable to z ~ 20 and beyond 12,13 . Their association with individual stars means that they serve as a signpost of star formation, even if their host galaxies are too 5 faint to detect directly. Equally important, precise determination of the hydrogen Lyman-α absorption profile can provide a measure of the neutral fraction of the IGM at the location of the burst 9,10,14,15 . With multiple GRBs at z > 7, and hence lines of sight through the IGM, we could thus trace the process of reionization from its early stages.However, until now the highest redshift GRBs (at z = 6. Ground-based optical observations in the r, i and z filters starting within a few minutes of the burst revealed no counterpart at these wavelengths (see Supplementary Information (SI)).The United Kingdom Infrared Telescope (UKIRT) in Hawaii responded to an automated request, and began observations in the K-band 21 minutes post burst. These images ( Figure 1) revealed a point source at the reported X-ray position, which we concluded was likely to be the afterglow of the GRB. We also initiated further nearinfrared (NIR) observations using the Gemini-North 8-m telescope, which started 75 min after the burst, and showed that the counterpart was only visible in filters redder than about 1.2 µm. In this range the afterglow was relatively bright and exhibited a shallow spectral slope F ν ∝ ν -0.26 , in contrast to the deep limit on any flux in the Y filter (0.97-1.07 µm). Later observations from Chile using the MPI/ESO 2.2m telescope, Gemini South and the Very Large Telescope (VLT) confirmed this finding. The nondetection in the Y-band implies a power-law spectral slope between Y and J steeper than. This is impossible for dust at any redshift, and is a tex...
Gamma-ray bursts (GRBs) serve as powerful probes of the early Universe, with their luminous afterglows revealing the locations and physical properties of star forming galaxies at the highest redshifts, and potentially locating first generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal to noise spectroscopy, or photometry. Here we present a photometric redshift of z ∼ 9.4 for the Swift detected GRB 090429B based on -3deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming an Small Magellanic Cloud dust law (which has been found in a majority of GRB sight-lines), the 90% likelihood range for the redshift is 9.06 < z < 9.52, although there is a low-probability tail to somewhat lower redshifts. Adopting Milky Way or Large Magellanic Cloud dust laws leads to very similar conclusions, while a Maiolino law does allow somewhat lower redshift solutions, but in all cases the most likely redshift is found to be z > 7. The non-detection of the host galaxy to deep limits (Y (AB) ∼ 28, which would correspond roughly to 0.001L * at z = 1) in our late time optical and infrared observations with the Hubble Space Telescope, strongly supports the extreme redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs, and suggest that its progenitor is not greatly different to those of lower redshift bursts.
We present the detection of the progenitor of the Type II SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the SN in the pre-explosion images was determined to within 23mas. The progenitor object was found to be consistent with a F8 supergiant star (logL/L = 4.92 ± 0.20 and T e f f = 6000 ± 280K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3M . The possibility of the progenitor source being a cluster is rejected, on the basis of: 1) the source is not spatially extended; 2) the absence of excess Hα emission; and 3) the poor fit to synthetic cluster SEDs. It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax, and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion.
We examine the nuclear morphology, kinematics, and stellar populations in nearby S0 galaxy NGC 404 using a combination of adaptive optics assisted near-IR integral-field spectroscopy, optical spectroscopy, and HST imaging. These observations enable study of the NGC 404 nucleus at a level of detail possible only in the nearest galaxies. The surface brightness profile suggests the presence of three components, a bulge, a nuclear star cluster, and a central light excess within the cluster at radii <3 pc. These components have distinct kinematics with modest rotation seen in the nuclear star cluster and counter-rotation seen in the central excess. Molecular hydrogen emission traces a disk with rotation nearly orthogonal to that of the stars. The stellar populations of the three components are also distinct, with half of the mass of the nuclear star cluster having ages of ∼1 Gyr (perhaps resulting from a galaxy merger), while the bulge is dominated by much older stars. Dynamical modeling of the stellar kinematics gives a total nuclear star cluster mass of 1.1 × 10 7 M ⊙ . Dynamical detection of a possible intermediate mass black hole is hindered by uncertainties in the central stellar mass profile. Assuming a constant mass-to-light ratio, the stellar dynamical modeling suggests a black hole mass of < 1 × 10 5 M ⊙ , while the molecular hydrogen gas kinematics are best fit by a black hole with mass of 4.5 +3.5 −2.0 × 10 5 M ⊙ . Unresolved and possibly variable dust emission in the near-infrared and AGN-like molecular hydrogen emission line ratios do suggest the presence of an accreting black hole in this nearby LINER galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.