Consistent inter-individual differences in behaviour (i.e. animal personality variation) can influence a range of ecological and evolutionary processes, including predation. Variation between individual predators in commonly measured personality traits, such as boldness and activity, has previously been linked to encounter rates with their prey. Given the strong selection on predators to respond to prey, individual predators may also vary consistently in their response to prey in a manner that is specific to the context of predation. By studying wild piscivorous fish (pike cichlids, Crenicichla frenata) in their natural environment using experimental presentations of prey and control stimuli, we show that individual predators differ consistently in the amount of time spent near prey. Crucially, these differences were not explained by the behaviour of the same individuals in control presentations (the same apparatus lacking prey), suggesting that variation in the response to prey reflects a 'predator personality trait' which is independent from other individual traits (body size, boldness and/or neophobia) and environmental factors. Pike cichlids which spent more time near prey also attacked prey at a higher rate. These findings imply that the risk posed by individual predators cannot always be adequately predicted from typically studied axes of personality variation.
Significance A widespread strategy used by prey animals, seen in insects, mammals, amphibians, crustaceans, fish, and reptiles, is to vary the direction in which they escape when attacked by a predator. This unpredictability is thought to benefit prey by inhibiting predators from predicting the prey’s escape trajectory, but experimental evidence is lacking. Using fish predators repeatedly tested with interactive, robot-controlled prey escaping in the same (predictable) or in random (unpredictable) directions, we find no clear benefit to prey of escaping unpredictably, driven by behavioral counteradaptation by the predators. The benefit of unpredictable escape behavior may depend on whether predators are able to counteract prey escape tactics by flexibly modifying their behavior, or unpredictability may instead be explained biomechanical or sensory constraints.
Limited attention constrains predators from engaging in cognitively demanding tasks such as searching for cryptic prey at the same time as remaining vigilant towards threats. Since finite attention can result in negative correlations between foraging and vigilance, the tendency of individual predators to focus attention on searching for cryptic prey may be correlated with other behavioural traits which reflect risk-reward trade-offs, such as consistent inter-individual variation in boldness (a personality trait describing risk-taking, defined in this study as the time taken to leave a refuge). We investigated the importance of personality in prey detection by comparing inter-individual variation in the response of three-spined sticklebacks (Gasterosteus aculeatus) to conspicuous and cryptic prey. Fish were slower to attack cryptic prey than conspicuous prey, consistent with cryptic prey being harder to detect. Despite the greater challenge involved in detecting cryptic prey, inter-individual variation in the time taken to detect prey was similar in the cryptic and conspicuous prey treatments, and was uncorrelated with boldness, which was repeatable between individuals. We also observed a positive association between the rate of attack on conspicuous prey and whether individual fish attacked cryptic prey in other trials. Our findings suggest that boldness is not related to prey detection or attention in this context. Instead, consistent differences in motivation once exploration has begun between individual predators may explain inter-individual variation in the time taken to attack both prey cryptic and conspicuous prey. Significance statement Using an experimental approach to manipulate the conspicuousness of prey, we show that individual fish consistently differ in their rates of attacking prey. This demonstrates that fish show “personality variation” in predatory behaviour, but these inter-individual differences were not related to the boldness of each fish (their tendency to engage in risky behaviours).
Consistent inter-individual differences in behaviour (i.e. animal personality variation) can influence a range of ecological and evolutionary processes, including predation. Variation between individual predators in commonly measured personality traits, such as boldness and activity, has previously been linked to encounter rates with their prey. Given the strong selection on predators to respond to prey, individual predators may also vary consistently in their response to prey in a manner that is specific to the context of predation. By studying wild piscivorous fish (pike cichlids, Crenicichla frenata) in their natural environment using experimental presentations of prey and control stimuli, we show that individual predators differ consistently in the amount of time spent near prey. Crucially, these differences were not explained by the behaviour of the same individuals in control presentations (the same apparatus lacking prey), suggesting that variation in the response to prey reflects a ‘predator personality trait’ which is independent from other individual traits (body size, boldness and/or neophobia) and environmental factors. Pike cichlids which spent more time near prey also attacked prey at a higher rate. These findings imply that the risk posed by individual predators cannot always be adequately predicted from typically studied axes of personality variation.
To increase their chances of survival, prey often respond to predators by being unpredictable when escaping, but the response of predators to such tactics is unknown. We programmed interactive robot-controlled prey to flee from an approaching blue acara predator (Andinoacara pulcher), allowing us to manipulate the predictability of the prey's initial escape direction. When repeatedly exposed to predictable prey, the predators adjusted their behaviour before the prey even began to escape: prey programmed to escape directly away were approached more rapidly than prey escaping at an acute angle. These faster approach speeds compensated for a longer time needed to capture such prey during the subsequent pursuit phase, and predators showed greater acceleration when pursuing unpredictable prey. Collectively, these behaviours resulted in the prey's predictability having no net effect on the time to capture prey. Rather than minimising capture times, predators adjust their behaviour to maintain an adequate level of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.