The LIGPLOT program automatically generates schematic 2-D representations of protein-ligand complexes from standard Protein Data Bank file input. The output is a colour, or black-and-white, PostScript file giving a simple and informative representation of the intermolecular interactions and their strengths, including hydrogen bonds, hydrophobic interactions and atom accessibilities. The program is completely general for any ligand and can also be used to show other types of interaction in proteins and nucleic acids. It was designed to facilitate the rapid inspection of many enzyme complexes, but has found many other applications.
The infectious isoform of the prion protein (PrPSc) is derived from cellular PrP (PrPC) in a conversion reaction involving a dramatic reorganization of secondary and tertiary structure. While our understanding of the pathogenic role of PrPSc has grown, the normal physiologic function of PrPC still remains unclear. Using recombinant Syrian hamster prion protein [SHaPrP(29-231)], we investigated metal ions as possible ligands of PrP. Near-UV circular dichroism spectroscopy (CD) indicates that the conformation of SHaPrP(29-231) resembles PrPC purified from hamster brain. Here we demonstrate by CD and tryptophan (Trp) fluorescence spectroscopy that copper induces changes to the tertiary structure of SHaPrP(29-231). Binding of copper quenches the Trp fluorescence emission significantly, shifts the emission spectrum to shorter wavelengths, and also induces changes in the near-UV CD spectrum of SHaPrP(29-231). The binding sites are highly specific for Cu2+, as indicated by the lack of a change in Trp fluorescence emission with Ca2+, Co2+, Mg2+, Mn2+, Ni2+, and Zn2+. Binding of Cu2+ also promotes the conformational shift from a predominantly alpha-helical to a beta-sheet structure. Equilibrium dialysis experiments indicate a binding stoichiometry of approximately 2 copper molecules per PrP molecule at physiologically relevant concentrations, and pH titration of Cu2+ binding suggests a role for histidine as a chelating ligand. NMR spectroscopy has recently demonstrated that the octarepeats (PHGGGWGQ) in SHaPrP(29-231) lack secondary or tertiary structure in the absence of Cu2+. Our results suggest that each Cu2+ binds to a structure defined by two octarepeats (PHGGGWGQ) with one histidine and perhaps one glycine carbonyl chelating the ion. We propose that the binding of two copper ions to four octarepeats induces a more defined structure to this region.
Studies on the transmission of human (Hu) prions to transgenic (Tg) mice suggested that another molecule provisionally designated protein X participates in the formation of nascent scrapie isoform of prion protein (PrP Sc ). We report the identification of the site at which protein X binds to the cellular isoform of PrP (PrP C ) using scrapieinfected mouse (Mo) neuroblastoma cells transfected with chimeric Hu͞MoPrP genes even though protein X has not yet been isolated. Substitution of a Hu residue at position 214 or 218 prevented PrP Sc formation. The side chains of these residues protrude from the same surface of the C-terminal ␣-helix and form a discontinuous epitope with residues 167 and 171 in an adjacent loop. Substitution of a basic residue at positions 167, 171, or 218 also prevented PrP Sc formation: at a mechanistic level, these mutant PrPs appear to act as ''dominant negatives'' by binding protein X and rendering it unavailable for prion propagation. Our findings seem to explain the protective effects of basic polymorphic residues in PrP of humans and sheep and suggest therapeutic and prophylactic approaches to prion diseases.
The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.