Figure 1. Visual computing for cohort-based radiation therapy (RT) prediction. A stylized 3D view of the predicted radiation plan of the current patient is placed centrally; top pale markers (front and back of eyes) receive the least radiation; tumors (black markers) receive the most. Additional RT views show the most similar patients under our novel T-SSIM measure, who contribute to the prediction; the most similar patient is currently highlighted (white) for comparison. A scatterplot (left) shows 4 clusters generated through the T-SSIM measure, with the current (cross) and comparison patient highlighted. A parallel-marker encoding (bottom) shows the predicted (blue cross) per-organ dose distribution within the context of the most similar patients; spatially collocated organs are in contiguous sections of the x-axis.Abstract-We describe a visual computing approach to radiation therapy (RT) planning, based on spatial similarity within a patient cohort. In radiotherapy for head and neck cancer treatment, dosage to organs at risk surrounding a tumor is a large cause of treatment toxicity. Along with the availability of patient repositories, this situation has lead to clinician interest in understanding and predicting RT outcomes based on previously treated similar patients. To enable this type of analysis, we introduce a novel topology-based spatial similarity measure, T-SSIM, and a predictive algorithm based on this similarity measure. We couple the algorithm with a visual steering interface that intertwines visual encodings for the spatial data and statistical results, including a novel parallel-marker encoding that is spatially aware. We report quantitative results on a cohort of 165 patients, as well as a qualitative evaluation with domain experts in radiation oncology, data management, biostatistics, and medical imaging, who are collaborating remotely.
Background
Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks evidentiary support and it is based on locally optimal decisions for each step.
Objective
We aim to optimize the multistep treatment of patients with head and neck cancer and predict multiple patient survival and toxicity outcomes, and we develop, apply, and evaluate a first application of deep Q-learning (DQL) and simulation to this problem.
Methods
The treatment decision DQL digital twin and the patient’s digital twin were created, trained, and evaluated on a data set of 536 patients with oropharyngeal squamous cell carcinoma with the goal of, respectively, determining the optimal treatment decisions with respect to survival and toxicity metrics and predicting the outcomes of the optimal treatment on the patient. Of the data set of 536 patients, the models were trained on a subset of 402 (75%) patients (split randomly) and evaluated on a separate set of 134 (25%) patients. Training and evaluation of the digital twin dyad was completed in August 2020. The data set includes 3-step sequential treatment decisions and complete relevant history of the patient cohort treated at MD Anderson Cancer Center between 2005 and 2013, with radiomics analysis performed for the segmented primary tumor volumes.
Results
On the test set, we found mean 87.35% (SD 11.15%) and median 90.85% (IQR 13.56%) accuracies in treatment outcome prediction, matching the clinicians’ outcomes and improving the (predicted) survival rate by +3.73% (95% CI –0.75% to 8.96%) and the dysphagia rate by +0.75% (95% CI –4.48% to 6.72%) when following DQL treatment decisions.
Conclusions
Given the prediction accuracy and predicted improvement regarding the medically relevant outcomes yielded by this approach, this digital twin dyad of the patient-physician dynamic treatment problem has the potential of aiding physicians in determining the optimal course of treatment and in assessing its outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.