The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations. Previous FIRE simulations used an identical source code ("FIRE-1") for consistency. Motivated by the development of more accurate numerics -including hydrodynamic solvers, gravitational softening, and supernova coupling algorithms -and exploration of new physics (e.g. magnetic fields), we introduce "FIRE-2", an updated numerical implementation of FIRE physics for the GIZMO code. We run a suite of simulations and compare against FIRE-1: overall, FIRE-2 improvements do not qualitatively change galaxy-scale properties. We pursue an extensive study of numerics versus physics. Details of the star-formation algorithm, cooling physics, and chemistry have weak effects, provided that we include metal-line cooling and star formation occurs at higher-than-mean densities. We present new resolution criteria for high-resolution galaxy simulations. Most galaxy-scale properties are robust to numerics we test, provided: (1) Toomre masses are resolved; (2) feedback coupling ensures conservation, and (3) individual supernovae are time-resolved. Stellar masses and profiles are most robust to resolution, followed by metal abundances and morphologies, followed by properties of winds and circum-galactic media (CGM). Central (∼kpc) mass concentrations in massive (> L * ) galaxies are sensitive to numerics (via trapping/recycling of winds in hot halos). Multiple feedback mechanisms play key roles: supernovae regulate stellar masses/winds; stellar mass-loss fuels late star formation; radiative feedback suppresses accretion onto dwarfs and instantaneous star formation in disks. We provide all initial conditions and numerical algorithms used.
Satellite galaxies in groups and clusters are more likely to have low star formation rates (SFR) and lie on the 'red-sequence' than central ('field') galaxies. Using galaxy group/cluster catalogs from the Sloan Digital Sky Survey Data Release 7, together with a high-resolution, cosmological N -body simulation to track satellite orbits, we examine the star formation histories and quenching timescales of satellites of M star > 5 × 10 9 M at z ≈ 0. We first explore satellite infall histories: group preprocessing and ejected orbits are critical aspects of satellite evolution, and properly accounting for these, satellite infall typically occurred at z ∼ 0.5, or ∼ 5 Gyr ago. To obtain accurate initial conditions for the SFRs of satellites at their time of first infall, we construct an empirical parametrization for the evolution of central galaxy SFRs and quiescent fractions. With this, we constrain the importance and efficiency of satellite quenching as a function of satellite and host halo mass, finding that satellite quenching is the dominant process for building up all quiescent galaxies at M star < 10 10 M . We then constrain satellite star formation histories, finding a 'delayed-then-rapid' quenching scenario: satellite SFRs evolve unaffected for 2 − 4 Gyr after infall, after which star formation quenches rapidly, with an e-folding time of < 0.8 Gyr. These quenching timescales are shorter for more massive satellites but do not depend on host halo mass: the observed increase in satellite quiescent fraction with halo mass arises simply because of satellites quenching in a lower mass group prior to infall (group preprocessing), which is responsible for up to half of quenched satellites in massive clusters. Because of the long time delay before quenching starts, satellites experience significant stellar mass growth after infall, nearly identical to central galaxies. This fact provides key physical insight into the subhalo abundance matching method.
Using galaxy group/cluster catalogues created from the Sloan Digital Sky Survey Data Release 7, we examine in detail the specific star formation rate (SSFR) distribution of satellite galaxies and its dependence on stellar mass, host halo mass and halo‐centric radius. All galaxies, regardless of central satellite designation, exhibit a similar bimodal SSFR distribution, with a strong break at SSFR ≈ 10−11 yr−1 and the same high SSFR peak; in no regime is there ever an excess of galaxies in the ‘green valley’. Satellite galaxies are simply more likely to lie on the quenched (‘red sequence’) side of the SSFR distribution. Furthermore, the satellite quenched fraction excess above the field galaxy value is nearly independent of galaxy stellar mass. An enhanced quenched fraction for satellites persists in groups with halo masses down to 3 × 1011 M⊙ and increases strongly with halo mass and towards halo centre. We find no detectable quenching enhancement for galaxies beyond ∼2 Rvir around massive clusters once these galaxies have been decomposed into centrals and satellites. These trends imply that (1) galaxies experience no significant environmental effects until they cross within ∼Rvir of a more massive host halo; (2) after this, star formation in active satellites continues to evolve in the same manner as active central galaxies for several Gyr; and (3) once begun, satellite star formation quenching occurs rapidly. These results place strong constraints on satellite‐specific quenching mechanisms, as we will discuss further in companion papers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.