Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.
Agricultural intensification over the last 40 years has increased cereal yields, but there is very limited information on the effects of intensification practices (e.g., nondiverse rotations, mineral NPK fertilizer, and pesticides) on crop health and quality. Results from the study reported here suggest that the use of mineral NPK fertilizers reduces phenolic acid and flavonoid concentrations in leaves and increases the susceptibility of wheat to lodging and powdery mildew, when compared to composted FYM inputs. In contrast, the use of herbicides, fungicides, and growth regulators reduces lodging and foliar disease severity but had no effect on phenolic acid and flavonoid concentrations. The use of composted FYM inputs also resulted in a significant grain yield reduction and not substantially reduced the severity of opportunistic pathogens such as Septoria, which remain a major yield limiting factor unless fungicides are used and/or more Septoria resistant varieties become available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.