Since the publication of the general theory of relativity (GTR), gravity has been described by classical field equations. Using this approach the GTR has resolved a number of problems in gravity, but is associated with some other difficulties. Mathematically GTR results in the formation of infinite density singularities in black holes, it challenges simultaneity and causality, and it is generally incompatible with quantum mechanics. A separate problem is the presence of "dark energy," the energy inherent in space time. GTR helps explain this energy by the addition of a separate cosmological constant. However, what is required are formulas that treat the energy in space time as an integral part of quantum gravity. This space-time energy is treated as integral in the quintessence model, and may be resolvable by the use of a minimum energy scale. In this paper we use the standard minimal energy scale, Planck's constant, and in turn define a new quintessence. Using this string quintessence, we obtain advanced quantum gravity (AQG), which technically agrees exactly with the GTR, in the range where the GTR has been widely tested. Additionally, the principle of relativity is also maintained, and advanced in order to restore simultaneity and causality. Moreover, using string quintessence, AQG resolves the difficulties related to singularities, and in turn explains the apparent presence of dark matter. The separate presence of dark energy can also be explained and is based directly on Planck's constant and the minimal distance scale, the Planck length. Overall, in this paper, gravitation is taken to the next level, black holes and in turn dark matter are explained, and dark energy, the presence of space-time energy, becomes integral to the equations of AQG.Résumé: Depuis la publication de la théorie de la relativité générale (TRG), les équations classiques de champ sont utilisées pour décrire la gravitation. Avec cette approche, la TRG a permis de résoudre un certain nombre de problèmes de gravitation, mais d'autres difficultés sont associées. Mathématiquement, la TRG produit des singularités de densité infinie dans les trous noirs, elle remet en question les notions de simultanéité et de causalité, et elle est, de manière générale, incompatible avec la mécanique quantique. Un autre problème est la présence de "l'énergie sombre," l'énergie liée à l'espace temps. La TRG tente de donner une explication à cette énergie en introduisant une constante cosmologique distincte. Cependant, cela exige que les formules liées à l'énergie dans l'espace-temps soient intégrées à la gravité quantique. Cette énergie est traitée de manière complète dans le modèle de la quintessence, et peut être résolu en considérant une échelle d'énergie minimale. Dans cet article nous utilisons l'échelle classique d'énergie minimale, la constante de Planck, et définissons ainsi une nouvelle quintessence. A l'aide de cette quintessence des cordes, nous obtenons la gravité quantique avancée (GQA), qui techniquement est conforme à la TRG, dans le domaine où ...
The equations for the general theory of relativity (GTR) have to date proved enormously successful. However, despite its success, there are a number of difficulties with GTR. Standard GTR predicts the formation of singularities in black holes, and it has enormous mathematical complexity. In this paper we find that the equations for GTR can be modified by mathematically defining the equations for the curvature of space-time, in terms of geodesies. Using these equations, we translate this curvature back into equations for an advanced Newtonian force of gravity. Using worked examples we show that such an advanced Newtonian equation can give results that agree very closely with GTR, but resolve the difficulties of standard GTR, including the formation of singularities. The formulation of this advanced Newtonian gravity can also potentially provide the basis for understanding the apparent missing mass of the Universe.Resume: Les équations de la théorie de la relativité générale (TRG) ont jusqu'à présent remporté un franc succès. Cependant, en dépit de son succès, un certain nombre de difficultés persiste. La TRG classique prévoit la formation de singularités dans les trous noirs, et elle présente une grande complexité mathématique. Dans cet article, nous montrons que les équations de la TRG peuvent être modifiées en définissant mathématiquement les équations de la courbure de l'espace-temps en termes de géodésiques. En utilisant ces équations, nous trouvons que la courbure correspond à une forme évoluée de la force de gravitation de Newton. En utilisant des exemples choisis, nous montrons quecette nouvelle forme de l'équation de Newton peut donner des résultats en accord avec la TRG, mais résout les difficultés de TRG classique, y compris la formation de singularités. Cette nouvelle formulation de la gravitation de Newton pourrait aussi servir de base pour la compréhension de l'apparente masse manquante dans l'univers.
There are currently two principal energy equivalence equations in common usage. Planck's formula describes energy equivalence on a quantum basis. Einstein's famous energy equivalence equation describes energy in terms of mass and the speed of light. In this paper, quantum physics is advanced by introducing a single fundamental a priori energy equivalence equation. This fundamental energy equation is based on a new form of quintessence, termed harmonic quintessence. Harmonic quintessence defines the fundamental quantum harmonic oscillator and its principal energy component, from Planck's constant h. This single a priori energy equivalence equation is capable of explaining both current energy equations. It also represents a considerable paradigm shift in quantum physics, which becomes far more deterministic, and is able to resolve the dichotomy of wave particle duality. This fundamental energy equation also allows the derivation of the equations for quantum mechanics from first principles, at a deeper quantum level.Résumé: Couramment deux équations sur l'équivalence de l'énergie sont principalement utilisées. La formule de Planck décrit l'équivalence de l'énergie sur le principe de la mécanique quantique. La célèbre équation de l'équivalence de l'énergie d'Einstein décrit l'énergie en termes de la masse et de la vitesse de la lumière. Dans cet article nous proposons de faire avancer la mécanique quantique en présentant une nouvelle équation fondamentale, et unique à priori, sur l'équivalence de l'énergie. Cette équation fondamentale sur l'énergie est basée sur une nouvelle forme de quintessence, appelée quintessence harmonique. La quintessence harmonique définit l'oscillateur harmonique fondamental de la mécanique quantique ainsi que sa composante principale de l'énergie à partir de la constante de Planck h. Cette équation, unique à priori, sur l'équivalence de l'énergie permet d'expliquer les deux équations sur l'énergie couramment utilisées. Elle représente également un nouveau paradigme de la physique quantique, qui devient bien plus déterministe, et permet ainsi de résoudre la dichotomie sur la dualité onde-particule. Cette équation fondamentale sur l'énergie permet également de dériver les équations de la mécanique quantique sur des principes de base, à un niveau quantique plus profond.
Both the charge and mass of the electron are empirically known to a great degree of accuracy. Similarly the constants such as the mass of the proton and the neutron are known to a good degree of accuracy. However, currently none of these constants can be derived from first principles, and their inter-relationship remains obscure. In this paper, harmonic quintessence is used to derive the charge and mass of the electron. Importantly, from here it is also possible to further derive the mass of the proton, neutron, and quarks from first principles, using harmonic quintessence.Résumé: La charge ainsi que la masse de l'électron sont connues de façon empirique avec une grande précision. De la même manière les constantes telles que la masse du proton et du neutron sont aussi connues avec une bonne précision. Pourtant, jusqu'à présent aucune de ces constantes peuvent être établies a partir de premiers principes de la physique et leur relation reste obscure. Dans cet article, nous utilisons la quintessence harmonique pour dériver de manière théorique la charge et la masse de l'électron. Tout aussi important, la quintessence harmonique permet de dériver la masse du proton, du neutron, et des quarks.
One of the most important unresolved issues of modern physics is the presence of cold dark matter (CDM). Such dark matter appears to be essential in explaining the observed galactic rotation curves and the missing Cosmological dark matter. Recent attention has focused on galactic halos as an explanation of the galactic rotation curves, and on the possibility that galactic halos may consist of massive compact halo objects (MACHOs). Indeed results of experiment by the MACHO collaboration group have confirmed the presence of MACHOs in the galactic halo at statistically significant levels. What remains unclear is, what percentage of the galactic halo can be explained by such MACHOs, and what these MACHOs are likely to be composed of. Recent research shows the "most plausible" candidates for such MACHOs are being identified as primordial black holes. Such primordial black holes can also explain quasar brightness, spectral variations, and multiply lensed quasar systems. The presence of these primordial black holes in the galactic halo can be further modelled using advances in black hole gravitational physics. Indeed it has previously been shown that advances in black hole physics can be used to accurately model both CDM associated with the supermassive black hole at the centre of the galaxy, and Cosmological cold dark matter. To establish whether the same mechanism applies to primordial black holes in galactic halos, the original data from the MACHO project are reanalyzed using these advances in black hole physics. It is concluded that the majority of the CDM mass of the galactic halo can be accounted for by MACHOs by using a reanalysis of the data, and by applying advances in black hole gravitational physics. Importantly these advances in black hole physics offer further readily testable gravitational predictions.Keywords: Primordial black hole, Gravitation, Black hole physics, Galactic halo, Cold dark matter, Cosmology IntroductionThe presence of CDM remains to date one of the most important unsolved mysteries of modern Cosmology. It is particularly important not only to the understanding of the large scale structure of the Universe, but also in explaining the formation of galaxies. To date the search has concentrated on two main forms of CDM; weakly interactive massive particles (WIMPs), and massive compact halo objects (MACHOs) (Cline 2003). While the presence of WIMPs or some other form of exotic particle is still the favoured model, there has been a recent increase in the interest in MACHOs. Indeed research indicates that the statistical likely hood of MACHOs being present in the galactic halo is high (Alcock et al. 2000a).The question however, remains as to how prevalent these MACHOs are in the galactic halo, and what form do these MACHOs take? Interestingly, a recent comprehensive review suggests that the most "plausible" form these MACHO's take is that of primordial black holes (Hawkins 2011). In that review, a wide range of experimental evidence from quasar brightness, spectral variations, and multip...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.