Abstract-Hypothesis of possible superconductivity of the iced matter of the rings of Saturn (based on the data of Voyager and Pioneer space missions) allow us to explain many phenomena which have not been adequately understood earlier. By introducing into planetary physics the force of magnetic levitation of the superconducting iced particle of the rings, which interact with the magnetosphere of the planet, it becomes possible to explain the origin, evolution, and dynamics of the rings; to show how the consequent precipitation of the rings' matter upon the planet was concluded; how the rings began their rotation; how they were compressed by the magnetic field into the thin disc, and how this disc was fractured into hundreds of thousands of separated rings; why in the ring B do exist "spokes"; why magnetic field lines have distortion near by ring F ; why there is a variable azimuth brightness of the ring A; why the rings reflected radio waves so efficiently; why there exists strong electromagnetic radiation of the rings in the 20,4 kHz-40,2 MHz range and Saturnian kilometric radiation; why there is anomalous reflection of circularly polarized microwaves; why there are spectral anomalies of the thermal radiation of the rings; why the matter of the various rings does not mix but preserves its small-scale color differences; why there is an atmosphere of unknown origin nearby the rings of Saturn; why there are waves of density and bending waves within Saturn's rings; why planetary rings in the solar system appear only after the Belt of Asteroids (and may be the Belt of Asteroids itself is a ring for the Sun); why our planet Earth has no rings of its own.
Hypothesis of possible superconductivity of the iced matter of the rings of Saturn (based on the data of Voyager and Pioneer space missions) allow us to explain many phenomena which have not been adequately understood earlier. Introducing into planetary physics force of magnetic levitation of the superconducting iced particle of the rings, which interact with magnetosphere of the planet, becomes to be possible to explain origin, evolution, and dynamics of the rings; to show how the consequent precipitation of the rings' matter upon the planet was concluded; how the rings began their rotation; how they were compressed by the magnetic field into the thin disc, and how this disc was fractured into hundreds of thousands of separated rings; why in the ring B do exist "spokes"; why magnetic field lines have distortion near by ring F; why there is a variable azimuth brightness of the ring A; why the rings reflected radio waves so efficiently; why exists strong electromagnetic radiation of the rings in the 20.4 kHz-40.2 MHz range and Saturnian kilometric radiation; why there is anomalous reflection of circularly polarized microwaves; why there are spectral anomalies of the thermal radiation of the rings; why the matter of the various rings does not mix but preserves its small-scale color differences; why there is an atmosphere of unknown origin nearby the rings of Saturn; why there are waves of density and bending waves within Saturn's rings; why planetary rings in the solar system appear only after the Belt of Asteroids (and may be the Belt of Asteroids itself is a ring for the Sun); why our planet Earth has no rings of its own.
The article demonstrates how rings disc of Saturn was created after appearance of the planetary magnetic field from superconducting iced particles of the protoplanetary cloud moving around planet by chaotic orbits. It is based on the fact that Saturn has magnetic field and the temperature of its vicinity is low enough to have superconductivity. Electromagnetic simulation estimates time of rings disc formation with the thickness about few meters from a few thousand years up to few tens of thousands of years. A rings disk has a stable structure located within magnetic equator of Saturn due to quantum locking of the particles by planetary magnetic field. Also may happened contribution to the rings disc from the debris of the moons migrated inward towards Saturn and particles of the frozen water coming from the geyser of the geologically active satellite (as Enceladus contributed to the E-ring). Suggested mechanism of the rings formation works even in case where only a small fraction of the particles poses superconductivity. Presented electromagnetic modeling of the role of superconducting iced particles of the rings disc origin, dynamics and evolution allow us to enrich the classical theories based on gravitational, mechanical, magnetohydrodynamic and plasma interactions.
It is demonstrated how superconducting iced particles of the protoplanetary cloud of Saturn are coming to magnetic equator plane and create the stable enough rings disk. There are two steps. First, after appearance of the Saturn magnetic field due to Meissner phenomenon, all particles orbits are moving to the magnetic equator plane. Finally they become distributed as rings and gaps like iron particles around magnet on laboratory table. And they are separated from each other by the magnetic field expelled from them. It takes up to few tens of thousands years with ten meters rings disk thickness. Second, because of quantum locking all particles become to be locked within magnetic well at the magnetic equator plane due to Abrikosov vortex for superconductor. Finally each particle is locked within three-dimensional magnetic well. It works even when particles have small fraction of superconductor. During the rings evolution some contribution to the disk also could come from the collision-generated debris of the current moon, coming meteorites and from the geysers like it happened due to magnetic coupling of Saturn and Enceladus. The rings are relict of the early days of the magnetic field of Saturn system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.