Using comparative analysis of genes, operons, and regulatory elements, we describe the cobalamin (vitamin B 12 ) biosynthetic pathway in available prokaryotic genomes. Here we found a highly conserved RNA secondary structure, the regulatory B12 element, which is widely distributed in the upstream regions of cobalamin biosynthetic/transport genes in eubacteria. In addition, the binding signal (CBL-box) for a hypothetical B 12 regulator was identified in some archaea. A search for B12 elements and CBL-boxes and positional analysis identified a large number of new candidate B 12 -regulated genes in various prokaryotes. Among newly assigned functions associated with the cobalamin biosynthesis, there are several new types of cobalt transporters, ChlI and ChlD subunits of the CobN-dependent cobaltochelatase complex, cobalt reductase BluB, adenosyltransferase PduO, several new proteins linked to the lower ligand assembly pathway, L-threonine kinase PduX, and a large number of other hypothetical proteins. Most missing genes detected within the cobalamin biosynthetic pathways of various bacteria were identified as nonorthologous substitutes. The variable parts of the cobalamin metabolism appear to be the cobalt transport and insertion, the CobG/CbiG-and CobF/CbiD-catalyzed reactions, and the lower ligand synthesis pathway. The most interesting result of analysis of B12 elements is that B 12 -independent isozymes of the methionine synthase and ribonucleotide reductase are regulated by B12 elements in bacteria that have both B 12 -dependent and B 12 -independent isozymes. Moreover, B 12 regulons of various bacteria are thought to include enzymes from known B 12 -dependent or alternative pathways. Cobalamin (CBL),1 along with chlorophyll, heme, siroheme, and coenzyme F 430 , constitute a class of the most structurally complex cofactors synthesized by bacteria. The distinctive feature of these cofactors is their tetrapyrrole-derived framework with a centrally chelated metal ion (cobalt, magnesium, iron, or nickel). Methylcobalamin and Ado-CBL, two derivatives of vitamin B 12 (cyanocobalamin) with different upper axial ligands, are essential cofactors for several important enzymes that catalyze a variety of transmethylation and rearrangement reactions. Among the most prominent vitamin B 12 -dependent enzymes in bacteria and archaea are the methionine synthase isozyme MetH from enteric bacteria; the ribonucleotide reductase isozyme NrdJ from deeply rooted eubacteria and archaea; diol dehydratases and ethanolamine ammonia lyase from enteric bacteria involved in anaerobic glycerol, 1,2-propanediol, and ethanolamine fermentation; glutamate and methylmalonyl-CoA mutases from clostridia and streptomycetes; and various CBL-dependent methyltransferases from methane-producing archaea (1-5).Most prokaryotic organisms as well as animals (including humans) and protists have enzymes that require CBL as cofactor, whereas plants and fungi are thought not to use it. Among the CBL-utilizing organisms, only some bacterial and archaeal species ...
Vitamin B 1 in its active form thiamin pyrophosphate is an essential coenzyme that is synthesized by coupling of pyrimidine (hydroxymethylpyrimidine; HMP) and thiazole (hydroxyethylthiazole) moieties in bacteria. Using comparative analysis of genes, operons, and regulatory elements, we describe the thiamin biosynthetic pathway in available bacterial genomes. The previously detected thiamin-regulatory element, thi box (Miranda-Rios, J., Navarro, M., and Soberon, M. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9736 -9741), was extended, resulting in a new, highly conserved RNA secondary structure, the THI element, which is widely distributed in eubacteria and also occurs in some archaea. Search for THI elements and analysis of operon structures identified a large number of new candidate thiamin-regulated genes, mostly transporters, in various prokaryotic organisms. In particular, we assign the thiamin transporter function to yuaJ in the Bacillus/Clostridium group and the HMP transporter function to an ABC transporter thiXYZ in some proteobacteria and firmicutes. By analogy to the model of regulation of the riboflavin biosynthesis, we suggest thiamin-mediated regulation based on formation of alternative RNA structures involving the THI element. Either transcriptional or translational attenuation mechanism may operate in different taxonomic groups, dependent on the existence of putative hairpins that either act as transcriptional terminators or sequester translation initiation sites. Based on analysis of co-occurrence of the thiamin biosynthetic genes in complete genomes, we predict that eubacteria, archaea, and eukaryota have different pathways for the HMP and hydroxyethylthiazole biosynthesis.
Zinc is an important component of many proteins, but in large concentrations it is poisonous to the cell. Thus its transport is regulated by zinc repressors ZUR of proteobacteria and Gram-positive bacteria from the Bacillus group and AdcR of bacteria from the Streptococcus group. Comparative computational analysis allowed us to identify binding signals of ZUR repressors GAAATGTTATANTATAA-CATTTC for ␥-proteobacteria, GTAATGTAATAACATTAC for the Agrobacterium group, GATATGTTATAACATATC for the Rhododoccus group, TAAATCGTAATNATTACGATTTA for Gram-positive bacteria, and TTAACYRGTTAA of the streptococcal AdcR repressor. In addition to known transporters and their paralogs, zinc regulons were predicted to contain a candidate component of the ATP binding cassette, zinT (b1995 in Escherichia coli and yrpE in Bacillus subtilis). Candidate AdcR-binding sites were identified upstream of genes encoding pneumococcal histidine triad (PHT) proteins from a number of pathogenic streptococci. Protein functional analysis of this family suggests that PHT proteins are involved in the invasion process. Finally, repression by zinc was predicted for genes encoding a variety of paralogs of ribosomal proteins. The original copies of all these proteins contain zinc-ribbon motifs and thus likely bind zinc, whereas these motifs are destroyed in zinc-regulated paralogs. We suggest that the induction of these paralogs in conditions of zinc starvation leads to their incorporation in a fraction of ribosomes instead of the original ribosomal proteins; the latter are then degraded with subsequent release of some zinc for the utilization by other proteins. Thus we predict a mechanism for maintaining zinc availability for essential enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.