In this paper numerical simulation of the spectral properties of xenon plasma is carried out for various parameters (temperature, density, pressure) within the framework of the Saha-Boltzmann approximation. For calculations, pre-prepared atomic databases with varying degrees of detail of ion states were used. The effect of ionization potential depression was taken into account. The spectral absorption coefficients and emissivity, as well as the spectral radiation energy flux for a homogeneous plasma in a spherically symmetric geometry, were obtained. The identification of strong spectral lines in the wavelength ranges of interest has been carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.