It is widely accepted that the hippocampal place cells' spiking activity produces a cognitive map of space. However, many details of this representation's physiological mechanism remain unknown. For example, it is believed that the place cells exhibiting frequent coactivity form functionally interconnected groups-place cell assemblies-that drive readout neurons in the downstream networks. However, the sheer number of coactive combinations is extremely large, which implies that only a small fraction of them actually gives rise to cell assemblies. The physiological processes responsible for selecting the winning combinations are highly complex and are usually modeled via detailed synaptic and structural plasticity mechanisms. Here we propose an alternative approach that allows modeling the cell assembly network directly, based on a small number of phenomenological selection rules. We then demonstrate that the selected population of place cell assemblies correctly encodes the topology of the environment in biologically plausible time, and may serve as a schematic model of the hippocampal network.
The mammalian hippocampus plays a key role in spatial learning and memory, but the exact nature of the hippocampal representation of space is still being explored. Recently, there has been a fair amount of success in modeling hippocampal spatial maps in rats, assuming a topological perspective on spatial information processing. In this article, we use the topological approach to study the formation of a 3D spatial map in bats, which produces several insights into neurophysiological mechanisms of the hippocampal spatial leaning. First, we demonstrate that, in order to produce accurate maps of the environment, place cell should be organized into functional groups, which can be interpreted as cell assemblies. Second, the model suggests that the readout neurons in these cell assemblies should function as integrators of synaptic inputs, rather than detectors of place cells' coactivity, which allows estimating the integration time window. Lastly, the model suggests that, in contrast with relatively slow moving rats, suppressing θ-precession in bats improves the place cells capacity to encode spatial maps, which is consistent with the experimental observations. © 2016 Wiley Periodicals, Inc.
Spatial navigation in mammals is based on building a mental representation of their environment—a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment—the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.