We study properties of a scalar quantum field theory on two-dimensional noncommutative space-times. Contrary to the common belief that noncommutativity of space-time would be a key to remove the ultraviolet divergences, we show that field theories on a noncommutative plane with the most natural Heisenberg-like commutation relations among coordinates or even on a noncommutative quantum plane with E q (2)-symmetry have ultraviolet divergences, while the theory on a noncommutative cylinder is ultraviolet finite. Thus, ultraviolet behaviour of a field theory on noncommutative spaces is sensitive to the topology of the space-time, namely to its compactness. We present general arguments for the case of higher space-time dimensions and as well discuss the symmetry transformations of physical states on noncommutative space-times.
After discussing the peculiarities of quantum systems on noncommutative (NC) spaces with nontrivial topology and the operator representation of the ⋆-product on them, we consider the Aharonov-Bohm and Casimir effects for such spaces. For the case of the Aharonov-Bohm effect, we have obtained an explicit expression for the shift of the phase, which is gauge invariant in the NC sense. The Casimir energy of a field theory on a NC cylinder is divergent, but it becomes finite on a torus, when the dimensionless parameter of noncommutativity is a rational number. The latter corresponds to a well-defined physical picture. Certain distinctions from other treatments based on a different way of taking the noncommutativity into account are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.