Terminally differentiating stratified squamous epithelial cells assemble a specialized protective barrier structure on their periphery termed the cornified cell envelope (CE). It is composed of numerous structural proteins that become cross-linked by several transglutaminase enzymes into an insoluble macromolecular assembly. Several proteins are involved in the initial stages of CE assembly, but only certain proteins from a choice of more than 20 different proteins are used in the final stages of CE reinforcement, apparently to meet tissue-specific requirements. In addition, a variable selection of proteins may be upregulated in response to genetic defects of one of the CE proteins or tissue injury, in an effort to maintain an effective barrier. Additionally, in the epidermis and hair fiber cuticle, a layer of lipids is covalently attached to the proteins, which provides essential water barrier properties. Here we describe our current understanding of CE structure, a possible mechanism of its assembly, and various disorders that cause a defective barrier.
This statistical study shows that in proteins of gram-negative bacteria exported by the Sec-dependent pathway, the first 14 to 18 residues of the mature sequences have the highest deviation between the observed and expected net charge distributions. Moreover, almost all sequences have either neutral or negative net charge in this region. This rule is restricted to gram-negative bacteria, since neither eukaryotic nor grampositive bacterial exported proteins have this charge bias. Subsequent experiments performed with a series of Escherichia coli alkaline phosphatase mutants confirmed that this charge bias is associated with protein translocation across the cytoplasmic membrane. Two consecutive basic residues inhibit translocation effectively when placed within the first 14 residues of the mature protein but not when placed in positions 19 and 20. The sensitivity to arginine partially reappeared again 30 residues away from the signal sequence. These data provide new insight into the mechanism of protein export in gram-negative bacteria and lead to practical recommendations for successful secretion of hybrid proteins.
Plakin family members envoplakin and periplakin have been shown to be part of the cornified cell envelope in terminally differentiating stratified squamous epithelia. In the present study, purified recombinant human envoplakin and periplakin were used to investigate their properties and interactions. We found that envoplakin was insoluble at physiological conditions in vitro, and co-assembly with periplakin was required for its solubility. Envoplakin and periplakin formed soluble complexes with equimolar stoichiometry. Chemical cross-linking revealed that the major soluble form of all periplakin constructs and of envoplakin/periplakin rod domains was a dimer, although co-assembly of the fulllength proteins resulted in formation of higher order oligomers. Electron microscopy of rotary-shadowed periplakin demonstrated thin flexible molecules with an average contour length of 88 nm for the rod-plus-tail fragment, and immunolabeling EM confirmed the molecule as a parallel, in-register, dimer. Both periplakin and envoplakin/periplakin oligomers were able to bind synthetic lipid vesicles whose composition mimicked the cytoplasmic side of the plasma membrane of eukaryotic cells. This binding was dependent on anionic phospholipids and Ca 2؉ . These findings raise the possibility that envoplakin and periplakin bind to the plasma membrane upon elevation of intracellular [Ca 2؉ ] in differentiating keratinocytes, where they serve as a scaffold for cornified cell envelope assembly.
Positively charged amino acid residues at the Nterminus of the signal peptide (SP) have been proposed to play a significant role in the initial step of protein secretion in bacteria. To test this hypothesis, Lys(-20) of the Escherichia coli alkaline phosphatase SP was replaced by other amino acid residues, and the effect of these substitutions on protein maturation was studied. The introduction of negatively charged and hydrophobic amino acids resulted in a decrease in secretion efficiency and impaired the SP-APL interaction, whereas His and Tyr had no significant effect. A structural analysis of the SP-APL interaction suggests that the positively charged Lys(-20) determines the stability of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.