The inverse spectral problem for the second-order differential pencil with quadratic dependence on the spectral parameter is studied. We obtain sufficient conditions for the global solvability of the inverse problem, prove its local solvability and stability. The problem is considered in the general case of complex-valued pencil coefficients and arbitrary eigenvalue multiplicities. Studying local solvability and stability, we take the possible splitting of multiple eigenvalues under a small perturbation of the spectrum into account. Our approach is constructive. It is based on the reduction of the non-linear inverse problem to a linear equation in the Banach space of infinite sequences. The theoretical results are illustrated by numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.