We study the nonlinear stage of the modulation instability of a condensate in the framework of the focusing nonlinear Schrödinger equation (NLSE). We find a general N-solitonic solution of the focusing NLSE in the presence of a condensate by using the dressing method. We separate a special designated class of "regular solitonic solutions" that do not disturb phases of the condensate at infinity by coordinate. All regular solitonic solutions can be treated as localized perturbations of the condensate. We find an important class of "superregular solitonic solutions" which are small perturbations at a certain moment of time. They describe the nonlinear stage of the modulation instability of the condensate.
We describe a general N -solitonic solution of the focusing nonlinear Schrödinger equation in the presence of a condensate by using the dressing method. We give the explicit form of one-and two-solitonic solutions and study them in detail as well as solitonic atoms and degenerate solutions. We distinguish a special class of solutions that we call regular solitonic solutions. Regular solitonic solutions do not disturb phases of the condensate at infinity by coordinate. All of them can be treated as localized perturbations of the condensate. We find a broad class of superregular solitonic solutions which are small perturbations at a certain moment of time. Superregular solitonic solutions are generated by pairs of poles located on opposite sides of the cut. They describe the nonlinear stage of the modulation instability of the condensate and play an important role in the theory of freak waves.
Since the 1960s, the Benjamin-Feir (or modulation) instability (MI) has been considered as the selfmodulation of the continuous "envelope waves" with respect to small periodic perturbations that precedes the emergence of highly localized wave structures. Nowadays, the universal nature of MI is established through numerous observations in physics. However, even now, 50 years later, more practical but complex forms of this old physical phenomenon at the frontier of nonlinear wave theory have still not been revealed (i.e., when perturbations beyond simple harmonic are involved). Here, we report the evidence of the broadest class of creation and annihilation dynamics of MI, also called superregular breathers. Observations are done in two different branches of wave physics, namely, in optics and hydrodynamics. Based on the common framework of the nonlinear Schrödinger equation, this multidisciplinary approach proves universality and reversibility of nonlinear wave formations from localized perturbations for drastically different spatial and temporal scales.
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schrödinger (NLS) equation. In order to model such gas we use N -soliton solutions (N -SS) with N ∼ 100, which we generate with specific implementation of the dressing method combined with 100-digits arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the kurtosis, the wave-action spectrum and the probability density function (PDF) of wave intensity.We show that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well described by the analytical relations derived without taking into account soliton interactions. With increasing soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons. Rogue waves emerging in soliton gas are multi-soliton collisions, and yet some of them have spatial profiles very similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution of the second order.
We investigate theoretically the fundamental phenomenon of the spontaneous, noise-induced modulational instability (MI) of a plane wave. The long-term statistical properties of the noise-induced MI have been previously observed in experiments and in simulations but have not been explained so far. In the framework of inverse scattering transform (IST), we propose a model of the asymptotic stage of the noise-induced MI based on N -soliton solutions (N -SS) of the integrable focusing one-dimensional nonlinear Schrödinger equation (1D-NLSE). These N -SS are bound states of strongly interacting solitons having a specific distribution of the IST eigenvalues together with random phases. We use a special approach to construct ensembles of multi-soliton solutions with statistically large number of solitons N ∼ 100. Our investigation demonstrates complete agreement in spectral (Fourier) and statistical properties between the long-term evolution of the condensate perturbed by noise and the constructed multi-soliton bound states. Our results can be generalised to a broad class of integrable turbulence problems in the cases when the wave field dynamics is strongly nonlinear and driven by solitons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.