We present new mixture representations for the generalized Linnik distribution in terms of normal, Laplace, exponential and stable laws and establish the relationship between the mixing distributions in these representations. Based on these representations, we prove some limit theorems for a wide class of rather simple statistics constructed from samples with random sized including, e. g., random sums of independent random variables with finite variances and maximum random sums, in which the generalized Linnik distribution plays the role of the limit law. Thus we demonstrate that the scheme of geometric (or, in general, negative binomial) summation is far not the only asymptotic setting (even for sums of independent random variables) in which the generalized Linnik law appears as the limit distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.