The increase of new gas turbine’s efficiency is connected with further rise of turbine inlet temperature and sometimes as well pressure. In these conditions, first cooled turbine stages of a gas turbine engine usually consist of freestanding airfoils, which do not use an integrated shroud, to avoid risk of shroud overheating. In order to better control the radial gap leakage flow between the rotating blade tip and turbine casing, special design features of the airfoil tip need to be considered in the design process to meet the best possible stage performance. In the general engineering practice, a blade tip squealer provides opportunities to control tip clearance loss. In this paper several simplified types of the tip squealer design are investigated to determine the most effective loss control. At this stage of the investigation, blade tip cooling was not taken into account, but aerodynamic effects were analysed in detail. Based on the most common designs of the blade tip in the literature, four geometry types were investigated: (i) a flat tip design as the reference baseline solution, (ii) full tip squealer, (iii) partial squealer along the pressure side (PS) wall with a cut-out at the pressure side near the trailing edge (TE) and (iv) partial squealer along the suction side (SS) wall with a cut-out at the suction side near TE. All these cases have been compared among each other for two relative radial gaps (gap to blade height) of 0.6% and 1.36%. The flow calculations were done with a full 3D Navier-Stokes CFD code. For the flat tip and for full squealer designs, numerical results were validated against well-known experimental data measured on the GE-E3 blade cascade test rig found in the open literature. By using the 3D numerical data, the special attention was considered to confirm reliability and predictive credibility of the blade tip flow obtained from the analytical model. The obtained loss values and flow details were compared for all studied cases, providing insight into turbine stage aerodynamics with respect to minimal and maximal radial clearance.
The flow in exhaust diffusers along with the channel geometry strongly depends on the inflow conditions, including Mach number level, total pressure distribution, flow angle, and turbulence. In the first part of this paper, the impact of these parameters is analyzed using computational fluid dynamics, experimental data from the test rig, and field measurements. A widespread opinion is that the optimal condition for the diffuser is an axial uniform inflow. However, it is shown in this paper that nonuniform pressure distribution compared with a uniform one can lead to better diffuser performance and that a moderate residual swirl can improve the performance as well. In the second part of this paper, the minimization of exhaust losses in heavy-duty gas turbines is discussed and illustrated by two practical examples.
A significant part of the overall loss in modern gas turbines is the trailing edge loss. This loss is, more strongly than other constituents, affected by operation, because the trailing edge can significantly change its shape due to degradation. Also by manufacturing of new parts and reconditioning the same tolerances as in other parts of blade lead to higher deviations of aerodynamic characteristics. Therefore the understanding of trailing edge loss generation mechanisms is of utmost importance for a sound blade design. In this work the results of combined experimental and numerical investigation of the trailing edge impact on the transonic cooled blade loss are presented. This study comprises the investigation of the unguided flow angle and the trailing edge shape on the profile losses and a base pressure. The unguided flow angle characterizes the curvature distribution on the aerofoil suction side. The numerical and experimental investigation of transonic cooled turbine cascades have shown that the increase of the unguided flow angle results in loss reduction due to increase of the base pressure downstream of the trailing edge. At the same time the deviation of the trailing edge from a round shape has detrimental effect on performance and conducted investigations allow quantification of this effect. The measurements were performed in a transonic wind tunnel and numerical simulations were done using in-house 2D Navier-Stokes code. The comparison of calculations with measurements showed that they are in reasonable agreement. The validated numerical procedure has been used for demonstration of possibility to reduce loss in aerofoil with thick trailing edge by tuning of the unguided flow angle. The use of the thick trailing edges at HP cooled turbines reduces restriction on tolerances, improves of manufacturability and reduces cost.
This paper presents investigation of nine tip squealer design variants based on full 3D Navier-Stokes CFD calculations. In particular two main design features have been studied: the impact of relative squealer cavity rim extension and the impact of pressure side squealer cavity rim inclination on stage efficiency. All these cases have been compared for two values of relative radial gaps 0.6% and 1.36%. Obtained numerical results were validated against the experimental data measured on the E3 blade cascade test rig given in the open literature. As the overall outcome for these numerical investigations two zones with different vortex structures and different sealing features have been found. Moreover the size of these zones determines the level of the tip clearance leakage and losses for various tip squealer designs. The obtained loss values and corresponding change of the stage efficiency level as well as flow structure details were compared for all studied cases, providing insight into turbine stage aerodynamics with respect to minimal and maximal radial clearance.
The degradation of gas turbine parts due to aging leads to changes in airfoil shape and often causes performance loss. Although the degradation mechanisms and their effects on performance are understood in general (e.g. it is well known that fouling of compressor airfoils reduces mass flow and efficiency), the first quantitative relationships between specific types of part degradation and performance characteristics have only recently been published. In this paper the degradation of turbine blades with aft-loaded airfoils is considered. The typical deviations of shape were identified based on field experience. The effects of these deviations on turbine performance were assessed using different calculation methods, including 3D Navier-Stokes calculations and methods based on empirical correlations. The effect of blades-length reduction, chord-length reduction, changes in trailing-edge thickness and shape, and variation of stagger angle were analysed. The analysis showed that for aft-loaded airfoils without shrouds, the major influence on turbine performance is the degradation of radial clearances. A simplified engineering procedure allowing estimation of turbine performance loss due to degradation has been developed. This paper demonstrates how this simplified procedure, can be applied to the estimation of turbine recovery potential during a typical engine overhaul.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.