<p><strong>Abstract.</strong> The real-time and robust fall detection is one of the key components of elderly people care and monitoring systems. Depth sensors, as they became more available, occupy an increasing place in event recognition systems. Some of them can directly produce a skeletal description of the human figure for compact representation of a person’s posture. Skeleton description makes the output of source video or detailed information about the depth outside the system unnecessary and raises the privacy of the entire system. Based on a comparative study of different RGB-D cameras, the most promising model for further development was chosen - Microsoft Kinect v2. The TST Fall Detection Dataset v2 is used here as a base for experiments. The proposed algorithm is based on the skeleton features encoding on the sequence of neighboring frames and support vector machine classifier. A version of a cumulative sum method is applied for combining the individual decisions on the consecutive frames. It is offered to use the one-class classifier for detection of low-quality skeletons. The 0.958 accuracy of our fall detection procedure was obtained in the cross-validation procedure based on the removal of records of a particular person from the database (Leave-one-Person-out).</p>
We present here an effective scheme for image denoising based on total variation regularization. The proposed scheme allows to efficiently remove Poisson noise as well as Gaussian noise simultaneously with the help of a new kind of data fidelity term, suitable for the mixed Poisson-Gaussian noise model. The results show that the algorithm corresponding to our new scheme outperforms the existing methods for mixed Poisson-Gaussian noise removal.
Outdoor images captured during inclement weather conditions generally exhibit visibility degradation. Localized light sources often result from activation of streetlights and vehicle headlights and are common scenarios in these conditions. The presence of localized light sources in hazy images may cause the generation of oversaturation artifacts when those images are restored by traditional state-of-the-art haze removal techniques. Therefore, we propose a novel haze removal approach based on the proposed hybrid dark channel prior technique in order to remedy the problems associated with localized light sources during image restoration. The overall results show that the proposed haze removal approach can recover haze-free images more effectively than can the other previous state-of-the-art haze removal approach while avoiding over-saturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.