Figure 1. Our proposed navigation technique allows players to switch to a scaled third-person perspective on demand and control a virtual avatar to cover large distances in open world VR scenarios. ABSTRACTIn virtual reality games, players dive into fictional environments and can experience a compelling and immersive world. State-of-the-art VR systems allow for natural and intuitive navigation through physical walking. However, the tracking space is still limited, and viable alternatives are required to reach further virtual destinations. Our work focuses on the exploration of vast open worlds -an area where existing local navigation approaches such as the arc-based teleport are not ideally suited and world-in-miniature techniques potentially reduce presence. We present a novel alternative for open environments: Our idea is to equip players with the ability to switch from first-person to a third-person bird's eye perspective on demand. From above, players can command their avatar and initiate travels over large distance. Our evaluation reveals a significant increase in spatial orientation while avoiding cybersickness and preserving presence, enjoyment, and competence. We summarize our findings in a set of comprehensive design guidelines to help developers integrate our technique.
Fig. 1. Left: Our experiments in VR with homogeneous and heterogeneous distractors, as we investigate the preattentiveness and robustness of Deadeye in such scenarios. Right: We demonstrate and evaluate volume rendering in VR as a possible real-world application scenario for our technique. Abstract-Visualizations rely on highlighting to attract and guide our attention. To make an object of interest stand out independently from a number of distractors, the underlying visual cue, e.g., color, has to be preattentive. In our prior work, we introduced Deadeye as an instantly recognizable highlighting technique that works by rendering the target object for one eye only. In contrast to prior approaches, Deadeye excels by not modifying any visual properties of the target. However, in the case of 2D visualizations, the method requires an additional setup to allow dichoptic presentation, which is a considerable drawback. As a follow-up to requests from the community, this paper explores Deadeye as a highlighting technique for 3D visualizations, because such stereoscopic scenarios support dichoptic presentation out of the box. Deadeye suppresses binocular disparities for the target object, so we cannot assume the applicability of our technique as a given fact. With this motivation, the paper presents quantitative evaluations of Deadeye in VR, including configurations with multiple heterogeneous distractors as an important robustness challenge. After confirming the preserved preattentiveness (all average accuracies above 90 %) under such real-world conditions, we explore VR volume rendering as an example application scenario for Deadeye. We depict a possible workflow for integrating our technique, conduct an exploratory survey to demonstrate benefits and limitations, and finally provide related design implications.
Preattentive visual features such as hue or flickering can effectively draw attention to an object of interest - for instance, an important feature in a scientific visualization. These features appear to pop out and can be recognized by our visual system, independently from the number of distractors. Most cues do not take advantage of the fact that most humans have two eyes. In cases where binocular vision is applied, it is almost exclusively used to convey depth by exposing stereo pairs. We present Deadeye, a novel preattentive visualization technique based on presenting different stimuli to each eye. The target object is rendered for one eye only and is instantly detected by our visual system. In contrast to existing cues, Deadeye does not modify any visual properties of the target and, thus, is particularly suited for visualization applications. Our evaluation confirms that Deadeye is indeed perceived preattentively. We also explore a conjunction search based on our technique and show that, in contrast to 3D depth, the task cannot be processed in parallel.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.