The development of markets for low-carbon energy sources requires reconsideration of issues related to extraction and use of oil and gas. Significant reserves of hydrocarbons are concentrated in Arctic territories, e.g., 30% of the world’s undiscovered natural gas reserves and 13% of oil. Associated petroleum gas, natural gas and gas condensate could be able to expand the scope of their applications. Natural gas is the main raw material for the production of hydrogen and ammonia, which are considered promising primary energy resources of the future, the oxidation of which does not release CO2. Complex components contained in associated petroleum gas and gas condensate are valuable chemical raw materials to be used in a wide range of applications. This article presents conceptual Gas-To-Chem solutions for the development of Arctic oil and gas condensate fields, taking into account the current trends to reduce the carbon footprint of products, the formation of commodity exchanges for gas chemistry products, as well as the course towards the creation of hydrogen energy. The concept is based on modern gas chemical technologies with an emphasis on the production of products with high added value and low carbon footprint.
The article discusses the possibility of improving the design of the turbine of a hydraulic drilling machine for drilling wells in very hard rocks and at considerable depths (5000–12,000 m). The analysis of the results of studies on the technical and technological characteristics of downhole drilling motors showed that it is impossible to ensure stable operation due to the limitation on the operating temperature, while with an increase in the flow rate of the drilling fluid, they do not provide the required power on the spindle shaft, and cannot reach high-speed drilling. In such conditions, turbodrills with a significant change in the profile of the stator and rotor blades and a reinforced support unit are most suitable. The paper presents an invariant mathematical model, which made it possible to determine the optimal geometric parameters based on preselected boundary conditions and the main performance characteristics of the turbine being developed. The results obtained were tested by the finite element method, which showed a convergence of 12.5%. At the same time, zones with the lowest and highest flow rates were identified. Additionally, this paper presents a comparative analysis of the obtained hydraulic turbine with turbodrills of the TSSH-178T and Neyrfor TTT 2 7/8 brands. In comparison with the domestic turbodrill, the developed turbine design shows a 13-fold reduction in its length and a 3-fold reduction in torque, provided that the maximum power is increased by 1.5 times. In comparison with the foreign analog, there is a decrease in length by 8.5 times, an increase in torque by 5 times, and in maximum power by 6.5 times.
Global climate change poses a challenge to the mineral development industry in the Arctic regions. Civil and industrial buildings designed and constructed without consideration of warming factors are beginning to collapse due to changes in the permafrost structure. St. Petersburg Mining University is developing technical and technological solutions for the construction of remote Arctic facilities and a methodology for their design based on physical and mathematical predictive modeling. The article presents the results of modeling the thermal regimes of permafrost soils in conditions of thermal influence of piles and proposes measures that allow a timely response to the loss of bearing capacity of piles. Designing pile foundations following the methodology proposed in the article to reduce the risks from global climate change will ensure the stability of remote Arctic facilities located in the zone of permafrost spreading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.