Currently, when modeling complex technological processes in cyber-physical systems, procedures for creating so-called "digital twins" (DT) have become widespread. DT are virtual copies of real objects which reflect their main properties at various stages of the life cycle. The use of digital twins allows real-time monitoring of the current state of the simulated system, and also provides additional opportunities for engineering and deeper customization of its components to improve the quality of products. The development of the "digital twin" technology is facilitated by the ongoing Fourth Industrial Revolution, which is characterized by the massive introduction of cyber-physical systems into production process. These systems are based on the use of the latest technologies for data processing and presentation and have a complex structure of information chain between its components. When creating digital twins of such systems elements, it is advisable to use programming languages, that allow visualization of simulated processes and provide a convenient and developed apparatus for working with complex mathematical dependencies. The Python programming language has similar characteristics. In the article, as an example of a cyber- physical system, a chemical-technological system based on a horizontal-grate machine is considered. This system is designed to implement the process of producing pellets from the apatite-nepheline ore mining wastes. The article describes various aspects of creating a digital twin of its elements that carry out the chemical-technological drying process in relation to a single pellet. The digital twin is implemented using the Python 3.7.5 programming language and provides the visualization of the process in the form of a three-dimensional interactive model. Visualization is done using the VPython library. The description of the digital twin software operation algorithm is given, as well as the type of the information system interface, the input and output information type, the results of modeling the investigated chemical-technological process. It is shown that the developed digital twin can be used in three versions: independently (Digital Twin Prototype), as an instance of a digital twin (Digital Twin Instance), and also as part of a digital twins set (Digital Twin Aggregate).
Thermally activated chemical and metallurgical processes of lumping of fine-dispersed iron ore raw material during sintering are examined in the work. The following processes are included: moisture removal, ignition of coke fines and burn-off of carbonates, taking into account burning features of coke fines, fusion of grain charge, forming of agglomeration cake, creation of overhumidification area in sintering layer owing to condensation of water vapours in washout of heat-carrying gas. Parameters of sintering kinetics are obtained experimentally, other parameters characterizing layer shrinkage of sintering charge are presented. It was established that the temperature in the sintering area has substantial effect on shrinkage. The presented temperature relationship describes experimental data with sufficient precision. The values of power exchange coefficients in the drying area are examined. The criteria equations of heat and mass exchange are presented. The mathematical model using empiric material is proposed; it describes sintering kinetics for agglomeration charge, taking into account layer shrinkage and variation of head losses in technological areas of fusion and forming of ready agglomerate, what corresponds well with the experimental data. Multi-factor relationship between chemical and metallurgical processes (from one side) and heat and mass exchange in the sintering layer of agglomeration charge (from other side) is noted. Adequacy of mathematical models allows to use them for analysis of high-efficient conditions of agglomerate fabrication. The research was conducted under financial support of the Russian Foundation of Basic Research (RFFI within the framework of the scientific project No. 18-29-24094 МК and in accordance with the State assignment, the project No. FSWF-2020-0019.
Nowadays the introduction of robotic systems is one of the most common forms of the technological operations automation in various spheres of human activity. Among the robotic systems a special place is occupied by sequential multi-link robotic manipulators (SRM). SRM have become widespread due to relatively small dimensions and high maneuverability, which makes their use indispensable to solve various tasks. In practice, the effectiveness of the functioning of the SRM can be influenced by various types of external environment fuzzy factors. Among the external factors there is a group affecting the ability to determine the exact target position. Such factors often affect technical vision systems. This problem is especially relevant for special purpose mobile robots operating in aggressive environmental conditions. A situation similar to the described one also occurs when a medical robot manipulator is used for minimally invasive surgery, when the role of the control and monitoring system is assumed by an operator. In this regard, the organization of effective control taking into account influence of the external fuzzy factors, that prevent the correct recognition of the target position of the SRM instrument, is an urgent problem. The authors consider the solution of the inverse kinematics problem for SRM based on the use of fuzzy numerical methods, taking into account the possible occurrence of singular configurations in the process of solving.
The practical implementation of the concept of electronic government is one of the priorities of Russian state policy. The organization of effective interaction between authorities and citizens is an important element of this concept. In addition to providing public services, it should include the processing of electronic appeals (applications, complaints, suggestions, etc.). Research has shown that the speed and efficiency of appeal processing largely depend on the quality of determining the thematic rubric, i.e. solving the rubrication task. The analysis of citizens' appeals received by the e-mail and official websites of public authorities has revealed several specific features (small size, errors in the text, free presentation style, description of several problems) that do not allow the successful application of traditional approaches to their rubrication. To solve this problem, it has been proposed to use various methods of intellectual analysis of unstructured text data (in particular, fuzzy logical algorithms, fuzzy decision trees, fuzzy pyramidal networks, neuro-fuzzy classifi convolutional and recurrent neural networks). The article describes the conditions of the applicability of six intellectual classifiers proposed for rubricating the electronic citizens’ appeals. They are based on such factors as the size of the document, the degree of intersection of thematic rubrics, the dynamics of their thesauruses, and the amount of accumulated statistical information. For a situation where a specific model cannot make an unambiguous choice of a thematic rubric, it is proposed to use the classifier voting method, which can significantly reduce the probability of rubrication errors based on the weighted aggregation of solutions obtained by several models selected using fuzzy inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.