We deal with aspects of the direct and inverse problems in parameterized Picard-Vessiot (PPV) theory. It is known that, for certain fields, a linear differential algebraic group (LDAG) G is a PPV Galois group over these fields if and only if G contains a Kolchin-dense finitely generated group. We show that, for a class of LDAGs G, including unipotent groups, G is such a group if and only if it has differential type 0. We give a procedure to determine if a parameterized linear differential equation has a PPV Galois group in this class and show how one can calculate the PPV Galois group of a parameterized linear differential equation if its Galois group has differential type 0.
We develop the representation theory for reductive linear differential algebraic groups (LDAGs). In particular, we exhibit an explicit sharp upper bound for orders of derivatives in differential representations of reductive LDAGs, extending existing results, which were obtained for SL 2 in the case of just one derivation. As an application of the above bound, we develop an algorithm that tests whether the parameterized differential Galois group of a system of linear differential equations is reductive and, if it is, calculates it.
Linear differential algebraic groups (LDAGs) appear as Galois groups of systems of linear differential and difference equations with parameters. These groups measure differential-algebraic dependencies among solutions of the equations. LDAGs are now also used in factoring partial differential operators. In this paper, we study Zariski closures of LDAGs. In particular, we give a Tannakian characterization of algebraic groups that are Zariski closures of a given LDAG. Moreover, we show that the Zariski closures that correspond to representations of minimal dimension of a reductive LDAG are all isomorphic. In addition, we give a Tannakian description of simple LDAGs. This substantially extends the classical results of P. Cassidy and, we hope, will have an impact on developing algorithms that compute differential Galois groups of the above equations and factoring partial differential operators.
Linear differential algebraic groups (LDAGs) measure differential algebraic dependencies among solutions of linear differential and difference equations with parameters, for which LDAGs are Galois groups. Differential representation theory is a key to developing algorithms computing these groups. In the rational representation theory of algebraic groups, one starts with SL 2 and tori to develop the rest of the theory. In this paper, we give an explicit description of differential representations of tori and differential extensions of irreducible representation of SL 2 . In these extensions, the two irreducible representations can be non-isomorphic. This is in contrast to differential representations of tori, which turn out to be direct sums of isotypic representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.