The phylogenetic relationships and the phylogeography of seven species of Caucasian barbels of the genus Barbus s. str. were studied based on extended geographic coverage and the use of mtDNA and nDNA markers. Based on the 26 species studied, matrilineal phylogeny of the genus Barbus is composed of two clades: a) West European clade, and b) Central and East European clade. The latter comprises two subclades: b1) Balkanian subclade, and b2) Ponto-Caspian subclade, which includes 11 lineages mainly from Black and Caspian Sea drainages. Caucasian barbels are not monophyletic and are subdivided into two groups. The Black Sea group encompasses species from tributaries of the Black Sea, including the reinstalled B. rionicus, except for B. kubanicus. The Caspian group includes B. ciscaucasicus, B. cyri (with B. goktschaicus, which might be synonymized with B. cyri), B. lacerta from the Tigris-Euphrates basin and B. kubanicus from the Kuban basin. The genetic structure of Black Sea barbels was influenced by glaciation-deglaciation periods accompanied by freshwater phases, periods of migration and the colonization of Black Sea tributaries. Intra-and intergeneric hybridization among Caucasian barbines was revealed for the first time. In the present study, we report the discovery of B. escherichii in the Kuban basin, where only B. kubanicus was known to inhabit.Hybrids of these two species were detected based on both mtDNA and nDNA markers. Remarkably, the Kuban population of B. escherichii is distant to closely located conspecific populations, and we consider it as a relic. We reveal the intergeneric hybridization between evolutionary tetraploid (2n=100) B. goktschaicus and evolutionary hexaploid (2n=150) Capoeta sevangi in Lake Sevan.
The phylogenetic relationships and the phylogeography of seven species of Caucasian barbels of the genus Barbus s. str. were studied based on extended geographic coverage and the use of mtDNA and nDNA markers. Based on the 26 species studied, matrilineal phylogeny of the genus Barbus is composed of two clades: a) West European clade, and b) Central and East European clade. The latter comprises two subclades: b1) Balkanian subclade, and b2) Ponto-Caspian subclade, which includes 11 lineages mainly from Black and Caspian Sea drainages. Caucasian barbels are not monophyletic and are subdivided into two groups. The Black Sea group encompasses species from tributaries of the Black Sea, including the reinstalled B. rionicus, except for B. kubanicus. The Caspian group includes B. ciscaucasicus, B. cyri (with B. goktschaicus, which might be synonymized with B. cyri), B. lacerta from the Tigris-Euphrates basin and B. kubanicus from the Kuban basin. The genetic structure of Black Sea barbels was influenced by glaciation-deglaciation periods accompanied by freshwater phases, periods of migration and the colonization of Black Sea tributaries. Intra-and intergeneric hybridization among Caucasian barbines was revealed for the first time. In the present study, we report the discovery of B. escherichii in the Kuban basin, where only B. kubanicus was known to inhabit.Hybrids of these two species were detected based on both mtDNA and nDNA markers.Remarkably, the Kuban population of B. escherichii is distant to closely located conspecific populations, and we consider it as a relic. We reveal the intergeneric hybridization between evolutionary tetraploid (2n=100) B. goktschaicus and evolutionary hexaploid (2n=150) Capoeta sevangi in Lake Sevan.
Spirlins of the genus Alburnoides are widespread fishes, which taxonomy has been rapidly developing in recent years. Mitochondrial cytochrome c oxidase subunit I (COI) was used as DNA barcode marker to create a reference dataset of Caucasian Alburnoides and to test its barcoding efficiency. All four previously known Caucasian species of Alburnoides were confirmed as valid species with high genetic distances to sister species as well confirmed as Caucasian endemics. Alburnoides samiii, previously known from Sefidroud basin (Iran), was discovered in Transcaucasia. The accuracy of species identification of Ponto-Caspian Alburnoides by DNA barcodes was 100%. In addition, one potentially new species within A. gmelini was revealed. Despite the limited ability of COI to infer phylogenetic relationships, study provided evidence that Ponto-Caspian lineage of Alburnoides includes significantly larger number of species from Caspian Sea basin and inland basins of Central Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.