The geomorphological studies and radiocarbon dating of moraine complexes and the tree line within the North Chuya Ridge, along with active slope processes, soil formation, and peat formation in southeastern Gorny Altai, constrain the age of the main glacial and climatic events in this area at 7 ka to the first half of the 19th century. It is for the first time in the history of Altai studies that 57 absolute dates were obtained for glaciation in a vast but climatically and neotectonically homogeneous area. The new data refute the conventional idea that the Holocene glaciation in this mountain land comprised eight stages of the gradual retreat of the Late Würm (Sartan) glaciation. Also, they evidence that glaciation in the upper parts of the troughs retreated almost completely no later than 7 ka and valley glaciers in southeastern Altai were activated many times in the second half of the Holocene. Data are given on the morphology and age of three moraine generations reflected in the topography. A combination of temperature minima and humidity maxima led to a catastrophically rapid and the largest (up to 5–6 km) ice advance at the Akkem Stage (4.9–4.2 ka). In addition to the radiocarbon data, the time limits of the Historical stage (2.3–1.7 ka) were defined more precisely using dendrochronological and archaeological data from Scythian burials of Pazyryk culture in SE Altai. The moraines closest to the present-day glaciers formed at the Aktru Stage (late 13th–middle 19th century). During warm interglacials, the glaciers waned considerably or retreated completely and the zone of recent glaciation was reforested. As a result of progressive aridization in the Holocene, the glaciers in southeastern Altai waned at each successive stage, and their mass balance was not positive during the greatest temperature minimum of the last millennium (middle 19th century).
We present the first results of application of long-term tree-ring chronologies for dating seismically triggered rockfalls and determining the upper age of Holocene rockfalls in southeastern Altai. Based on the results of seismic dendrochronological analysis, dating of penetrating wood injuries is proposed and tested, and the criterion for the distinguishing of seismically triggered rockfalls among slope processes of climatic nature is formulated. An earlier unknown strong earthquake of 1532 has been recognized; its traces are dated by the radiocarbon method. Based on the new data and calibration of earlier radiocarbon dates, the recurrence period of strong earthquakes in the southeastern Altai is refined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.