Surgical drainage of intracranial hematomas is often required within the first four hours after traumatic brain injury (TBI) to avoid death or severe disability. Although CT and MRI permit hematoma diagnosis, they can be used only at a major health-care facility. This delays hematoma diagnosis and therapy. We proposed to use an optoacoustic technique for rapid, noninvasive diagnosis of hematomas. In this study we developed a near-infrared OPO-based optoacoustic system for hematoma diagnosis and cerebral venous blood oxygenation monitoring in rats. A specially-designed blast device was used to inflict TBI in anesthetized rats. Optoacoustic signals were recorded from the superior sagittal sinus and hematomas that allowed for measurements of their oxygenations. These results indicate that the optoacoustic technique may be used for early diagnosis of hematomas and may provide important information for improving outcomes in patients with TBI.
Monitoring of cerebral venous oxygenation is useful to facilitate management of patients with severe or moderate traumatic brain injury (TBI). Prompt recognition of low cerebral venous oxygenation is a key to avoiding secondary brain injury associated with brain hypoxia. In specialized clinical research centers, jugular venous bulb catheters have been used for cerebral venous oxygenation monitoring and have demonstrated that oxygen saturation < 50% (normal range is 55-75%) correlates with poor clinical outcome. We developed an optoacoustic technique for noninvasive monitoring of cerebral venous oxygenation. Recently, we designed and built a novel, medical grade optoacoustic system operating in the near-infrared spectral range for continuous, real-time oxygenation monitoring in the superior sagittal sinus (SSS), a large central cerebral vein. In this work, we designed and built a novel SSS optoacoustic probe and developed a new algorithm for SSS oxygenation measurement. The SSS signals were measured in healthy volunteers during voluntary hyperventilation, which induced changes in SSS oxygenation. Simultaneously, we measured exhaled carbon dioxide concentration (EtCO 2 ) using capnography. Good temporal correlation between decreases in optoacoustically measured SSS oxygenation and decreases in EtCO 2 was obtained. Decreases in EtCO 2 from normal values (35-45 mmHg) to 20-25 mmHg resulted in SSS oxygenation decreases by 3-10%. Intersubject variability of the responses may relate to nonspecific brain activation associated with voluntary hyperventilation. The obtained data demonstrate the capability of the optoacoustic system to detect in real time minor changes in the SSS blood oxygenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.