Skin cancer has always been and remains the leader among all tumors in terms of occurrence. One of the main factors responsible for skin cancer, natural and artificial UV radiation, causes the mutations that transform healthy cells into cancer cells. These mutations inactivate apoptosis, an event required to avoid the malignant transformation of healthy cells. Among these deadliest of cancers, melanoma and its ‘younger sister’, Merkel cell carcinoma, are the most lethal. The heavy toll of skin cancers stems from their rapid progression and the fact that they metastasize easily. Added to this is the difficulty in determining reliable margins when excising tumors and the lack of effective chemotherapy. Possibly the biggest problem posed by skin cancer is reliably detecting the extent to which cancer cells have spread throughout the body. The initial tumor is visible and can be removed, whereas metastases are invisible to the naked eye and much harder to eliminate. In our opinion, antisense oligonucleotides, which can be used in the form of targeted ointments, provide real hope as a treatment that will eliminate cancer cells near the tumor focus both before and after surgery.
Despite a significant number of investigations in the field of phosphazene chemistry, the formation mechanism of this class of cyclic compounds is still poorly studied. At the same time, a thorough understanding of this process is necessary, both for the direct production of phosphazene rings of a given size and for the controlled cyclization reaction when it is secondary and undesirable. We synthesized a series of short linear phosphazene oligomers with the general formula Cl[PCl2=N]n–PCl3+PCl6– and studied their tendency to form cyclic structures under the influence of elevated temperatures or in the presence of nitrogen-containing agents, such as hexamethyldisilazane (HMDS) or ammonium chloride. It was established that linear oligophosphazenes are inert when heated in the absence of the mentioned cyclization agents, and the formation of cyclic products occurs only when these agents are involved in the process. The ability to obtain the desired size phosphazene cycle from corresponding linear chains is shown for the first time. Known obstacles, such as side interaction with the PCl6– counterion and a tendency of longer chains to undergo crosslinking elongation instead of cyclization are still relevant, and ways to overcome them are being discussed.
Imidophosphoric organic esters containing phosphoryl groups are potential polydentate ligands and promising extractants of rare-earth elements. For their preparation, a monophosphazene salt [PCl3=N−PCl3]+[PCl6]− and short phosphazene oligomers of the general formula [Cl–(PCl2=N)n–PCl3]+[PCl6]−, where n = 4–7, were synthesized via living cationic polymerization of Cl3P=NSiMe3 and used as starting compounds. All phosphazenes were reacted with 2-ethylhexanol to obtain the corresponding esters of imidophosphoric acids (EIPAs). The formation of imidophosphoric acids occurs due to the phosphazene-phosphazane rearrangement of –P(OR)2=N– or –P(OH)(OR)=N– units, where R = 2-ethylhexyl. The prepared EIPAs were characterized by 1H, 31P NMR, and MALDI-TOF analyses and their extractive capacity towards lanthanide ions in aqueous solutions of nitric acid was examined. The EIPAs are mixtures of mono-, di-, and trifunctional compounds of the type HxA, where x = 1–3, which can form chelate complexes of lanthanide ions [Ln(A)z], where z = 3–6, depending on the chain length. The longer chain EIPAs are more suitable for collective rare-earth elements extraction. A comparison of the extraction properties of the EIPAs with the industrially used polyalkylphosphonitrilic acid (PAPNA) was drawn.
Finding new ways for the preparation of cross-linked structures is a significant problem in terms of materials for biomedical application, lithium batteries electrolytes, and etc. Within this work we have studied the possibility to utilize hydrosilylation and Piers-Rubinsztajn reactions to obtain cross-linked model phosphazene compounds, containing eugenoxy and guaiacoxy groups. It was shown that Piers-Rubinsztajn reaction cannot be efficiently used to prepare tailored polymer-matrix, due to the catalyst deactivation by nitrogen atoms of phosphazene units. A number of cross-linked phosphazene-based materials was obtained with the use of hydrosilylation reaction and their properties were studied by NMR spectroscopy, FTIR, DSC, and TGA. This work showed a perspective for the use of eugenoxy functional groups for the preparation of three-dimensional hybrid phosphazene/siloxane-based materials for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.