Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies, aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (...
Cholesterol and sphingomyelin form together a highly ordered membrane phase, which is believed to play important biological functions in plasma membranes of mammalian cells. Since sphingomyelin is present mainly at the outer leaflet of cell membranes, monitoring its lipid order requires molecular probes capable to bind specifically at this leaflet and exhibit negligibly slow flip-flop. In the present work, such a probe was developed by modifying the solvatochromic fluorescent dye Nile Red with an amphiphilic anchor group. To evaluate the flip-flop of the obtained probe (NR12S), we developed a methodology of reversible redox switching of its fluorescence at one leaflet using sodium dithionite. This method shows that NR12S, in contrast to parent Nile Red, binds exclusively the outer membrane leaflet of model lipid vesicles and living cells with negligible flip-flop in the time scale of hours. Moreover, the emission maximum of NR12S in model vesicles exhibits a significant blue shift in liquid ordered phase (sphingomyelin-cholesterol) as compared to liquid disordered phase (unsaturated phospholipids). As a consequence, these two phases could be clearly distinguished in NR12S-stained giant vesicles by fluorescence microscopy imaging of intensity ratio between the blue and red parts of the probe emission spectrum. Being added to living cells, NR12S binds predominantly, if not exclusively, their plasma membranes and shows an emission spectrum intermediate between those in liquid ordered and disordered phases of model membranes. Importantly, the emission color of NR12S correlates well with the cholesterol content in cell membranes, which allows monitoring the cholesterol depletion process with methyl-beta-cyclodextrin by fluorescence spectroscopy and microscopy. The attractive photophysical and switching properties of NR12S, together with its selective outer leaflet staining and sensitivity to cholesterol and lipid order, make it a new powerful tool for studying model and cell membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.